Microwave Opt Technol Lett 59 (2017) 802-805

Compact Multilayer Wideband Symmetric Five-Port Reflectometer

Samir Salem Al-Bawri,^{1,2} Mohd Faizal Jamlos,^{1,3} Siti Zuraidah Ibrahim,¹ and Syed Alwee Aljunid¹

¹Advanced Communication Engineering Centre (ACE), School of Computer and Communication Engineering, Universiti Malaysia Perlis (UniMAP), Kampus Pauh Putra, Arau, Perlis 02600, Malaysia, ²Faculty of Engineering, Hadhramout University, Hadhramout, Yemen, ³Faculty of Mechanical Engineering, Universiti Malaysia Pahang (UMP), Pekan 26300, Malaysia.

Abstract: This article presents a new design of a wideband, compact, and low-cost symmetric five-port reflectometer (5PR). The proposed 5PR features a wide operational bandwidth of 3240 MHz (about 162% centered at 2 GHz). Five-symmetric branch-lines consist of SCURVE, STEE, SLIN, and Term were designed and optimized to achieve an equivalent value of 78 dB for S₁₁, S₂₂, S₃₃, S₄₄, and S₅₅ at center frequency of 2 GHz. Such consistent value between those S-parameters proven a perfect matching impedance are successfully obtained by proposed symmetric 5PR even own a bandwidth as high as 162%. Moreover, the simulated and measured results show the proposed 5PR has realized magnitude of 0 dB (S₁₁), 0.5 (S₁₂, S₁₃, S₁₄, S₁₅, S₂₁, S₂₃ S₅₄) as well as phase relative error of 1208 which in parallel to theoretical values. With all capabilities mentioned, the proposed 5PR is a promising candidate to be installed in a microwave imaging system for biomedical applications in the future.

Keywords:

Five port, reflection coefficient, reflectometer, microstrip, wideband

Article history: Received: 9 September 2016 Published: 4 April 2017

© 2017 Wiley Periodicals, Inc. All rights reserved.