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Abstract: In this paper we study the existence and uniqueness of solution for the first order differential
equation,Z—f + f(t,x(®)) = 0,t € [0, T] with the nonlocal condition x(1) + I¥ x(t)|,=¢, = X, ., then

we prove that the solution is uniformly stable.

Keywords: First order; Ordinary differential equation; Nonlocal condition; Stability.

1. Introduction

In the last decades many authors studied the nonlocal
problems with different conditions (for example see [1, 2, 3,
4,5,7,8,9, 12, 13, 14] and the references therein).

In this work, we study the existence and uniqueness of a
solution of the first order ordinary differential equation with
the nonlocal condition

2+ f(tx®) =0te[0T]

1
x(1) + 1" x(O)le=¢, = %0, v € (0,1] )
and then we study the stability of the solution.
Preliminaries:

First of all, we give some basic notations and definitions
which will be used in this paper.

Let C(I) denotes the class of continuous functions and
L(I) denotes the class of Lebesgue integrable functions on
theinterval I = [a,b],where0 < a< b < ooandlet I'(.)
denotes the gamma function.

Definition 1. [15] The fractional-order integral of the
function f € L[a, b] of order
B € R* is defined by
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Definition 3. [10] The solution of problem P is uniform
stable, if Ve > 0,3 6(¢) > 0, such that

lx, — %,| < 6(e) = |x(t) — %(t)| < e

Where %(t) is the solution of the problem P.
Theorem 1. ( Arzela - Ascolis Theorem ) [11] Let E be a
compact metric space and C(E) be the Banach space of real
or comlex valyed continuous functions norms by

IfIl = suplf ()]
tEE

If A= {f,}is asequence in C(E) such that f, is uniformly
bounded and equi-continuous mapping, then 4 is compact.
Theorem 2. ( Lebesgue dominated convergence Theorem)
[6] Let {f,} be a sequence functions converging to a limit f
on A and suppose that

If(®)] < @(t), teAn=12,..

Where ¢ is integrable on A then f is integrable on A and
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2. Integral Representation:

In this section, we study integral representation of the
solution of the nonlocal problem (1).
Lemma 1. The solution of the nonlocal problem (1) can be
expressed by the integral equation as

x(t)=A (xo + folf(s,x(s))ds +
fot" (to=s)" f(s,x(s))ds ) - fot f(s,x(s)) ds. 2

r(y+1)
. _ riy+1)
A = (F(y+1)+t V)

Proof. Integrating equation Z—’t‘ + f(t,x(t)) = 0, we get

t
x(t) = ¢ — J-f(s,x(s)) ds,
0
operating on both sides of the above equation by 17, we
obtain

Y

O oD

— " x(0)

Also from the relation x(1) + IV x(t)|¢=¢, = %, , We have

e
f f(s,x(s))ds +F( +1)

fo (t, —
oy +1) f(s x(s))ds =x,,
then
ry+1)
¢ (W) f flsix(s))ds
fo (t, — p
S (s x9)ds)
and
x(t)=A4A (xo +f (s,x(s))ds
0 o e, -
F( n 1) f(s x(s))ds)
— f f(s,x(s)) ds.
0
where A = (%)

3. Existence of Solution:

In this section, we discuss the existence of the solution
of the nonlocal problem (1).

Consider the problem (1) under the following
assumptions:

(i) f:10,1] x R = R is measurable in t € [0,1] for every
X € R,

(ii)) f:[0,1] x R = R is continuous in x € R for every

t e [0,1],

(iii) there exists a function m € L'[0,1] such that
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Ifl<m.
Theorem 3. Let the assumption (i)-(ii)-(iii) are satisfied then
the nonlocal problem (1) has at least one continuous solution
x € C[0,1].
Proof. Define asubset Q, c C[0,1] by
Q, = {x(t) >0, for each t € [0,1], ||u|| < r}, r=
Ax,+ 3| |m||2.
The set @, is nonempty, closed and convex.
Let T: Q, - Q, be an operator defined by

Tx(t) =A (xo + flf(s,x(s))ds

to(t, —
F( n 1) f(s x(s))ds>

- f f(s,x(s)) ds.
0
For x € Q,,let {x,(t)} beasequencein @, converges
tox(t), x,(t) - x(t),vte][0,1], then
1
lim Tx,(t) = Ax, + A lim j f(s, xn(s))ds

(0_
A li
+ nl—l;lc;loor( +1

— lim jtf(s, xn(s)) ds
n—oo 0

) f(s xn(s))ds

Since the assumption (i)-(ii)-(iii) are satisfied then by
applying Lebesgue dominated convergence Theorem we get
lim T x,(t) = (Tu)(t)

n—-oo

Then T is continuous.
Now, letu € Q,, then

| T0)®)] < |4 ( j f(s x(s))ds

to (t, —
o+ D 1) f(s x(s))ds)

- j f(s,x(s)) ds |
0

< Axo+Af |f(s,x(s))|ds
0
to (t, —
ry+1) +1)

t
+f |f(s,x(s))| ds
0

|f(s x(s)) |ds

A 1
< Axo+(A+m+ 1).1; |f(s,x(s))|ds
< Axo+3|Iml|, =

Then {Tx(t)} is uniformly bounded in Q...

In what follows we show that T is a completely
continuous operator.
For t,,t, € (0,1), t; < t, such that |t,
have

-t < & we
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(Tx)(t2) — (Tx)(t1) ,
= —J- 2f(s,x(s))ds
0

+ ftlf(s,x(s))ds
0 t

(T (t) - (T (t)] < f f(5,x()) | ds

< ftz m(s) ds
(T (&) — (T (E)] < €

Hence the class of functions {Tx(t)} is equi-continuous.
By Arzela - Ascolis Theorem {Tx(t)} is relatively compact.
Since all conditions of Schauder Theorem held, then T has
a fixed pointin Q,..

Therefore the integral equation (2) has at least one
positive continuous solution x € €(0,1).

Now,

1
tl_i)rg;r x(t) = Atlim (xo +f f(s,x(s))ds

(to
f ( n 1) f(s x(s))ds)

- tl_i)r(}gr f(s,x(s)) ds
1 0
=A (xo +f f(s,x(s))ds
0 o e, -
TGTD 1) f(s x(s))ds) = x(0),
and

1
tlirln_ x(t) = Atllr{l— (xo +f f(s,x(s))ds

to (t, —
r'y+1) +1)

—tlir?_f[)f(s,x(s)) ds

=4 (xo + flf(s,x(s))ds
0

fo (t, —
F(y+ 1)

- f f(s,x(s)) ds = x(1),
0

Then the integral equation ( 2 ) has at least one
continuous solution x € C[0,1] .

To complete this proof, differentiating equation (2), we
obtain the differential equation of problem (1).

Then, operating on both sides of equation (2 ) by IV, we
obtain

L fGs x(s))ds)

L fGs x(s))ds)

Ax,t’ Atr

ro+D TTorD T (S'x(s))ds
At to (t, —

F(y +1)J), I'y+ 1)

Lt )”
e _:1) (s,x(s))ds

I"x(t) =

(s x(s))ds
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lett = 1 inequation (2) and t = t, in the above equation, we
get
x(1) + Iyx(t)|t=to

1
= Ax, + Af f(s,x(s))ds

+A | ;g ) f(s x(s))ds
toy
f f(s x(s)) ds + ——~ F( +1)
At
F(y+ D) f(s,x(s))ds
Aty [to(t,—
F(y +1)J, F(y + 1)

to(t, —
F(y n 1) f(s x(s))ds

+ 1) Ax,

f(s x(s))ds

- (5D
+ (A + %— 1)]0 f(s,x(s))ds

+(A+ Ato
rty +1)

o (t, —
_ ) o F(y+1) f(s x(s))ds
ry+1 )

t,Y
- (1"(y+1)+ )(F(y+1)+toy %o

ry+n N\, At
" <r(y+ ) +toy>( "o+ D

-1 (s x(s))ds

ry+1) 1 At
+ <F(y+1)+t7’>( T T+

f(s x(s))ds = x,

F( + 1)
The proof is complete.

4. Uniqueness of the Solution:
For the uniqueness of the solution we have the following
theorem:
Theorem 4. Assume that there exists a constant k > 0 such
that
Ift,x) — fE& | <klx —yl,vte[01],
Vx,y € C[0,1]

y+1

A
k<A+m+1><l, 3)

then the problem (1) has a unique solution x € C[0,1].
Proof. Define the operator H: C[0,1] = C[0,1] by

Hx(t) = (xo + flf(s x(s))ds +
fot" (to=s)" f(s,x(s))ds ) — fot f(s,x(s))ds. (4

r(y+1)
Let x,y € C[0,1], then
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Hx(t) — Hy(t) =A flf(s,x(s))ds

to(t, —
+A | F( +1) f(s x(s))ds

- ftf(s,x(s)) ds

1 to(t, —s)
—Afo f(s,y(s))ds — A To+ D

+ J:f(s,y(s)) ds

1
= Af (f(s,x(s)) - f(S.y(S)))dS

fo(t, —
+ A i o+ D +1) (f(sx(s))

- £(5.¥()) ds
- [ () - £y ds
0

f (s,¥(s))ds

1
IHxG)—HﬂﬂlskAflx@)—y@Nds
0

+kAftOM Ix(s)
0

o+ —y(s)lds

—kL|m9—y@Nw

< kA sup |x(t) —y(t)| ds
te[o,1] 0

+kA sup |x(®) (t)|ft°(t°_s)y d
Ssu X - —_— S
te[OI,)I] Y o Tr+1)
t
—ksmﬂﬂﬂ—yﬁﬂfds
te[0,1]

Ras

Hx —Hy|| <kAlx—-yll+kA —
I = Hyll < e Allx = Y1l + ke Alle =l s

+k[lx —yll

At'y+1
<k|A+ 1 - =Kl||lx —
<kfa+ g T =51l = = )

Ato

but since K = k(A + + 1) < 1, then we get
IIHx—HyII < [lx = yll

Therefore the map H:C[0,1] — C[0,1] is contraction and
then equation (2) has a unique fixed point x € C[0,1].
Stability:

Now we are ready to study the uniform stability of the
solution of the nonlocal problem (1).
Theorem 5. Let the assumptions of Theorem 2 be satisfied,
then the solution of the problem (2) is uniformly stable.
Proof. Let x(t) be the solution of

x(t)=A (xo + flf(s,x(s))ds
0

to(t, —
m (S x(s))ds)

— f f(s,x(s)) ds.
0

and let X(t) be the solution of equation (2) such that ¥(1) +
1Y ()| ey, = %o
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Then
1
x(t) %)= A(x, — %,) + Af f(s,x(s))ds

—Aflf(s,f(s))ds
( o
+A ; F( +1) f(s x(s))ds
to (t, —
- A ) F(y+1) f(s %(s))ds

- ft f(s,x(s)) ds + f f(s,a?(s)) ds
0 0
lx(®) —x(O)] = Alx, - %ol

+ Af |f (s, x()) — f(s,%(s))| ds
to (to — )Y i
+AL FG?%SV@W@H—f@m@n|m
" J |f(s.x()) = f(s5,%())| ds
0

1
<Alx,— X,|+A4 sup [x(t) — %(t)| f ds

€[0,1]
o (t, = )Y
A — 9% 7
+ sup |x(t) x(t)lf F(y+1) ds
+ sup |x(t) —f(t)|] ds
te[0,1] 0
Therefore,
y+1
e =l < A Lo = %l + Allx = 2]+ All = 2 7

+ llx — %I
Therefore, Ve > 0,3 6 > 0, such that
[x, — X%, | <= |Ix—%|| <€
which proves that the solution of problem (2) is uniformly
stable.
5. Conclusion:

This paper studied a first order ordinary differential
equation with a fractional-order integral condition by finding
the existence, uniqueness and uniform stability of the
solution.
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e € Japda A g¥) An jall G dgalad) il Adaleall ) S Jsa

Al o e alady

e B0 e dx/dt + F(t,X(1))=0,t€[0,T] oY) A all o Alalisll Aslaall Jall dilan 5 5 29 5 i G andl 134 6 2adlall
v A e oSl el g Ty Gua dall adaiiall )Y Gl 3 x(1)+ (1] Ay x(t) | (t5t_0 )=x_olasll

O Cusy mE LA [0,1] A ax s te [0,1],08) dlaia XE Rx—> fi(t,X), S (uliill AL ¢ — f{(t,x) : 4l s 5l géas dlliad)
[f<m
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