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A numeric  Study  on the Influence of the  Values of the Parameter  P  in 

Kronig – Peneny Equation on the Width of the Bands 
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Abstract 

 
After showing the importance of Bloch Theory about  Schrödinger' equation solution with a periodic potential; we 

demonstrated that the periodic structure of square well in one dimension  of the model of Kronig-Penney on the band 

theory of solid,  shows clearly the structure of the allowed and forbidden  bands in the  in the crystalized solids and  

we showed how we can introduce the parameter p in the final equation of this model of bands. Then, we conducted a 

sufficient study on the influence of this parameter on the widths of the allowed and forbidden energy bands in the 

crystals. We find that, the width of an allowed band decreases with the increase in the value of this parameter, and the 

width of a forbidden band increases with the increase in the value of this parameter. 
 

Keywords: periodic potential, Bloch function, energy band, allowed (range) band,  forbidden (range ) band.  

 

Introduction: 

In 1928  Bloch has proved the important theorem 

that the solutions of  the Schrödinger equation 

with a periodic potential are, in three dimensions,  

of the form  [1, 2, 3 , 4 ] : 

     k (  ⃗) = uk ( ⃗) exp(i ⃗⃗.  ⃗)                    ( 1 )  

In one dimension ,  the solutions are reduced to 

an expression of the form [ 1 ] : 

 k (x) = uk (x) exp(ikx)              (  ́) 

Where uk ( ⃗) and ( uk (x) )  are  functions 

depending on the wave vector  ⃗⃗ ;  ( on the wave 

number  k  ,  respectively , which is  periodic in 

x, y, and z ; ( which is periodic in x ) , with the 

periodicity of the potential , that is with the 

period of the lattice of the crystal . The solutions 

of the form (1) ; and ( of the form (  ́) ,   are 

known as Bloch functions in three dimensions ;  

( in one dimension ). We see that a Bloch 

function is a plane wave: ( exp(i ⃗⃗.  ⃗ ) ) which is  

modulated with the period of the lattice. 

Since that date , the Bloch functions  were 

largely used in the study of the solid state , 

especially in the study of the propagation of 

waves associated with the motion of electrons 

and holes  in the crystals  [1 , 2, 3 , 5 , 6 , 7, 8 , 9 

, 13 , 14 , 15 , 16, 17 ] .  

If we consider N lattice points on a ring of length 

Na , with N            ; and if we suppose that the 

period of the potential is a , so that  :  

V( x ) = V ( x + ga ) ,      where g is an integer,  

 Then, because of the symmetry of the ring , we 

look for eigen-functions     ( x ) such that : 

 ( x + a ) = c  ( x ) , 

Where c is a complex constant , then , [3 , 5 ,6 , 7 

, 9 ,15] we have : 

  ( x + ga ) = c
g
   ( x ) ; 

 and , if the eigen-function is to be single-value, 

then : 

 ( x + Na ) = c
N
   ( x ) =   ( x ) , 

so that c is one of the N roots of the unity [ 3, 6 , 

7 , 9, 15 ] , then : 

c = exp(i2 g/N) ;   g = 0, 1, 2, 3, …….., N-1 . 

 So that the Bloch function in one dimension is 

writing : 

  ( x ) = exp(i2 gx/(Na)) ug(x)               (2) 

where ug(x) has the periodicity a  of the linear 

lattice ,  and  if we write :. 

k = 2 g/(Na) ,  

then , the Bloch function in one dimension ,  

which a satisfactory solution of  Schrödinger 

wave equation, in one dimension  is given by the 

expression  : 

 k(x) = exp(ikx)uk(x)               (3) 

At the beginning of  this research ,   we showed  

the expressions of  Schrödinger wave equations  

used for the one dimensional periodic potential of  

the model of Kronig - Penney  [ 6  , 7 , 10, 12, 15]. 

Then , after we had found the expression of the 

determinant of the system  of the four linear 

homogeneous equations obtained from the 

equations of  Schrödinger for the model,  we wrote  

the condition on this determinant  which gives  the 

acceptable solutions of the four linear 

homogeneous equations . After that we  gave the 

expression of the parameter  p  [6 , 7, 10, 12, 15 ] ,  

then we  established the handier equation of the 

model of Kronig- Penney which contain the 

parameter  p and which determines the ranges of 

allowed and forbidden bands of the energy E [ 6 ,7, 

10 ,12, 15] . At the end of this research we gave a 

large numeric study on the influence of values of 
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the parameter  p on the widths of the allowed bands 

and forbidden bands of energy in the crystalized 

solids .   

Kronig-Penney model: 

In this model , largely used in the band  theory of  

solids , we dealt with a periodic square-well 

potential
  
in one dimension ( see figure 1 ). This 

model is largely artificial , but it is a model 

which can be treated explicitly , using only 

elementary functions, and we could with this 

model,  demonstrate some of the fundamental 

characteristic features of electron propagation in 

crystals [ 5 , 6 , 10 , 12 , 17 ]  .

 

 
 

Fig.1 :  Kronig  and Penney one dimensional periodic potential. 

 

The Schrödinger wave equation of the 

problem is: 
       

    + 
  

   ( E – V ) (x) = 0                   (4) 

The running wave solutions will be of the form 

of a plane wave modulated with the periodicity 

of the lattice. 

By substituting (3) into (4), we get , 
       

    + 2ik 
       

   
 +

  

   ( E – Ek – V )u(x) = 0 (5)  

where  Ek =  2
k

2
/(2m) 

In the region : 0   x   a ;  and in the regions 

which are equivalent to this region , (for example 

, the region : - (a +b)   x   - b ; see the figure 

1), the general solution of the equation (5) has 

the form  [4 , 6 , 7 , 11 ] : 

u1k(x) = Aexp[i(  - k)x] + Bexp[-i(  + k)x]     (6) 

Where we pose :   = [2mE/  2
 ]

1/2
  , and          (7)   

A and B are two constants of integration. 

In the region : a   x   a + b ;    and in the 

regions which are equivalent to this region, ( for 

example , the region : - b   x   0 ;  see the 

figure 1), the general solution of the equation (5) 

has the form  [ 4 , 6 , 7 , 11 ] : 

u2k(x) = Cexp[(  - ik)x] + Dexp[-( + ik)x]     (8) 

Where we pose :   = [2m( V0 – E)/   2 
]

1/2 
, and (9)  

C and D are two constants of integration . 

From the continuity of the wave functions at the 

points : x = 0  and x = a , we have respectively :   

u1k (0) = u2k(0) , and ;  u1k(a) = u2k(a)  ; then we 

get , respectively , 

A    + B     -  C       -  D    =    0                         (a) 

and  

 [e
i(α  - K)a 

  ]A  +  [e
-i(α +k)a

 ]B  -  [e
(β  -ik)a

 ]C   -  [e
-(β 

+ ik)a 
]D  = 0 ;                ( ́)   

and from the continuity of the derivatives of the 

wave functions at the points : x = 0  and x = a ; 

we have ,  respectively :  (du1k/dx)x=0 

=(du2k/dx)x=0 , and;  (du1k/dx)x=a =(du2k/dx)x=a  ;  

then we get , respectively, 

 [i(  - k)]A  -  [i(  + k)]B   -  [(   -ik)]C  +  [(  

+ik)]D  = 0 ;           (c) 

and 

[i(  -k)e
i( α -k)a

 ]A  – [i(α +k)e
-i(α +k)a

 ]B  - [( β -

ik)e
(β -ik)a  

]C + [(β+ik)e
-(β + ik)a 

 ]D = 0 .       ( ́) 

The periodicity of u1k(x)  and  u2k(x) and of their 

derivatives requires that the values of u1k(x) and 

u2k(x) and of (du1k/dx) and (du2k/dx) at the point 

x = a must  be equal  to those at the point x = -b , 

then we have : u1k(a) = u2k(a) = u2k(-b) and 

(du1k/dx)x=a = (du2k/dx)x=-b  ;  then we rewrite the 

equations ( ́) and ( ́) , respectively , as follows : 

[e
i( α- K)a 

  ]A  + [e
-i(α +k)a

 ]B  - [e
-(  β -ik)b

 ]C   - [e
( β + 

ik)b 
]D  = 0 ;           (b) 

and   

[i(α -k)e
i( α -k)a

 ]A – [i(  α +k)e
-i(  α+k)a

 ]B   - [( β - 

ik)e
-( β-ik)b  

]C + [( β +ik)e
( β + ik)b 

 ]D = 0 .       (d) 

The constants A , B , C and D must be chosen in 

such a manner that the four conditions giving by 

the equations : (a) , (b) , (c) and (d) are satisfied , 

then the wave functions may be calculated by 

determining the values of these precedents 

constants . However, here we are more interested 
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in determining the values of the energy  E  for 

which satisfactory solutions are obtained ,then : 

if we put : 

d11 = 1 ;   d12 = 1;    d13 = -1  ;    d14 = -1 ;    d21 = 

i(α- k ) ;    d22 = -i(α+k) ;  d23 = -(β-ik) ;    (10a) 

d24 = (β + ik) ;   d31 = e
i( α -k)a 

 ;   d32 = e
-i(  α +k)a

  ;  

d33 = -e
-( β  -ik)b 

;      d34 = -e
( β +ik)b 

 ;              (10b) 

d41 = i(α -k)e
i( α -k)a

  ; d42 = -i(α +k)e
-i( α+k)a  

 ; d43 = 

-(β -ik)e
-( β -ik)b 

 and  d44 = (β+ik)e
( β+ ik)b

   (10c)  

then, we will be able to rewrite the precedent 

system of the four linear homogeneous equations : 

(a), (b), (c ) and (d)  as follows:

 

d11  .  .  .  d14          A            0 

 

                                                               .     .  .  .    .           B            0                                     (11) 

 

 

.     .  .  .    .            C            0 

 

d41  .   .  .  d44         D            0 

 

 

                  

 

Here , we are not interested in  the determination 

of the solutions (6) and (8) of the running waves 

in the periodic potential in one dimension of the 

model which are obtained  by determining the 

values of constants : A , B , C and D which 

determine the solution of the system (11)  of the 

four linear homogeneous equations , but we are 

more interested here in finding the values of the 

energy  E  for which satisfactory solutions can be 

obtained , from  which we can determine the 

limits of the bands of energy in the solid . 

The determinant of the system (11) of the four 

linear homogeneous equations is written as:

 

d11    d12    d13   d14 

                                   
d21   d22   d23   d24 

                                    

d31   d32   d33   d34 

  

d41   d42   d43  d44 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= (-1)
1+1

 d11  

              

d22   d23   d24 

d32    d33   d34 

d42   d43   d44 

+ (-1)
1+2

 d12  

              

d21   d23   d24 

d31    d33   d34 

d41   d43   d44 

+ (-1)
1+3

 d13 

               

d21   d22   d24 

d31    d32   d34 

d41    d42   d44 

+ (-1)
1+4

 d14     

           

d21   d22   d23 

d31    d32   d33 

d41   d42   d43 

= 
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Then , we have,  

 

        d11 …d14 

              .         .        = d11d44[d22d33  - d32d23 ]+d11d42[d23d34 – d24 d33 ]+ d11d43[d32d24 –d22d34] – 

   
       d41 … d44        d12d44[d21d33  - d31d23 ]- d12d41[d23d34 – d24 d33 ]- d12d43[d31d24 –d21d34] +  

  

                               d13d44[d21d32 – d22d31] +d13d41[d22 d34 –d32 d24] +d13d42[d31d24- d21d34] - 

 

                               d14d43[d21d32 – d22d31] - d14d41[d22 d33 –d32 d23]- d14d42[d31d23- d33d21]       (12) 

 

By using the expressions of the coefficients : d11 

,d12 , d13 and d14  which were  giving in (10a) ,  in 

the  expression (12)  of the determinant, and  

after the necessary arrangement of the terms of 

this expression , we get the following equation :

 

  d11 … d14   

 

  ……...       = (d22 – d21)[ d33d44 – d34d43 ] + (d41 – d42)[d33d24 – d34d23 ] +  

 

d41 ... d44       (d33  – d34)[ d22d41 – d21d42] + (d32 – d31 )[d43d24 – d44d23 ]+ 

 

                      (d44  - d43)[d31d22 – d32d21 ] + (d24  - d23 )[d41d32 – d42d31 ]                   (13) 

 

By the use of the expressions of the coefficients  dij  , which were giving in (10a) , (10b) and (a0c) , in the 

terms of the second member of (13) ; we get the expressions  of these terms as in the following : 

[d33d24 – d34d23] = [-2 cosh( b) + i2ksinh( b) ]xe
ikb 

(d41 – d 42) = i(2 cos( a) – 2iksin(  a) )xe
-ika

                        

then ,(d41 – d42 )[d33d24 – d34d23] = 4i{-  cosh( b)xcos( a) +i kcos( a)xsinh( b) + 

                                                     i kcosh( b)xsin( a) + k
2
sinh( b)xsin( a)}xe

i(b-a)k 
             (14a) 

     [d22d41 – d21d42 ] = -2i(k
2 
–  )xsin( a)xe

-ika
 

               (d33 – d34 ) = 2sinh( b)xe
ikb 

 then, 

  (d33 –d34)[d22d41 – d21d42] = 4i(   – k
2
)xsinh( b)xsin( a)xe

i(b-a)k
                                        (14b) 

   [d43d24 – d44d23] = 2(   +k
2
 )xsinh( b)xe

ikb 

                    
(d32 – d31) = -i2sin( a)xe

-ika 

then, 

   (d32 – d31 )[d43d24 – d44d23] = -4i(  +k
2
 )xsinh( b)xsin( a)xe

i(b-a)k
                                     (14c) 

  [d31d22 – d32d21 ] = -i2[  cos( a) +iksin( a)]xe
-ika 

    
  (d44  -d43 ) = 2[ cosh( b) +iksinh( b)]xe

ikb 

then, 

   (d44 –d43 )[d31d22 – d32d21] = 4i{-  cosh( b)xcos( a) –i kcosh( b)xsin( a) – 

                                                   i ksinh( b)xcos( a) + k
2
sinh( b)xsin( a)}xe

i(b-a)k
                (14d) 

    (d33d44 – d34d43] = -2 xe
i2bk 

             (d22 – d21 ) = -2 i 

 then, 

  (d22 – d21 )[d33d44 – d34d43] = 4i  e
2ikb                                                                                                  

                     (14e)  

and , 

  [d41d32 – d42d31] = 2i e
-2ika 

            (d24 – d23) = 2  

Then, 

  (d24 – d23)[d41d32 – d42d31 ] = 4i  e
-2iak

                                                                                   (14f)   

 

If we make the addition of the expressions (14a) 

to (14f) then ,  we obtain the expression of the 

determinant (13) of the system of the four linear 

homogeneous  equations as a function of the 
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wave vector k . This expression is given by, 

4i{[-2  cosh( b)xcos( a)   + (  –    
) 

sinh( b)xsin( a) ]xe
i(b-a)k

  +  [e
2ibk

 + e
-2iak

 ]}  (15) 

The system (11) of the four linear homogeneous 

equation has a solution ( on addition to the trifle 

solution: A = B = C = D = 0 ) , if the expression  

(15)  of the determinant (13)  of the coefficients 

dij vanishes. But, if we multiply the expression  

(15) by (1/i4) x exp[i(a-b)k] , this expression t 

remains unchanged  . Then , after the 

multiplication of the expression (15) of the 

determinant (13) and make the result of the 

multiplication equal to zero ; and after the 

rearrangement of the terms of the obtained 

expression, we get the following condition: 

 [(  –   )/2(  )]xsinh( b)xsin( a) + 

cosh( b)xcos( a) = cos[(a+b)k]                  (16) 

 In order to obtain a handier equation, we can 

represent the periodic square potential of the 

model by a periodic delta function , by passing to 

the limit where  b =0  and V0         ,    in such a 

way that the product : (  b/2) stays finite [5 ,6 7, 

12 , 17 ] . 

Then , if we set , 

 lim(  ab/2) = p  ,         (17) 

 

 

 

 

 

with (  b/2) stays finite and different from zero , 

we obtain the handier equation : 

p[sin( a)/  a)] + cos( a) = cos(ka)             (18) 

This equation is the final equation of the model  

 

of Kronig-Penney  and we use this equation for 

our  numeric study on the influence of the values 

of the parameter p on the widths of the firsts 

allowed and forbidden bands  in the crystals .   

Results and discussion of the numeric study 

on the influence of the parameter  p  on the 

widths of the bands : 

In order to have  wave functions of the form (3) ; 

in other words , for Bloch functions to exist ; the 

transcendental equation given by the relation 

(18) must have a solution for the variable (a  ) , 

then for  the energy E of the states. As the cosine 

term on the right side of the  equation (18) can 

have values only between -1 and +1 , then only 

those values of the parameter ( a) are allowed 

for which the left side falls in this range ( 

between -1 and +1 ) .  

Influence of the values of the parameter  p  on 

the limits of the allowed ranges of the variable 

a  for the six firsts  allowed zones :  

For finding the allowed ranges of the variable 

( a), which are functions of the energy E of 

states , then of the wave vector k ,  we 

commence our study by plotting the left  side of 

the equation  (18) (  the  expression : 

p[sin( a)/  a)]  + cos( a) ) ,  as function of the 

variable a   between the values : a  =      and 

a  = +     of this variable . The  Fig.2a  is 

plotted for p =  /2 and the figures : Fig.2b , 

Fig.2c ,.….., and  Fig.2f  are plotted for the value 

of the parameter p equals to :   , 3 /2 ,  2   , 5  

/2 and  3  respectively . The allowed values of 

the variable  a  are drawn heavily  on these six  

figures . 

   

 

b        0 
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In the six precedent  figures  ( the figures  from  

the Fig.2a to the Fig.2f  ) one can see  clearly  

that , with a given value of the parameter p , the 

upper limit of an allowed range  of the parameter 

(a ) , which has the order n  is given by n   , 

where n = 1 , 2 ,3 , … Then we can always  

know exactly the value of the upper limit of an 

allowed range of  a ,    ( then we can know 

exactly the value of the upper limit of the 

correspond allowed energy band  E ). The value 

of the lower limit of an allowed range of the 

parameter  a, ( then the value of the lower limit 

of the  correspond allowed energy band E ) , can  

sometimes be know exactly   and  sometimes can 

be calculated with the tolerated percentage on the 

error of the  calculation . In our calculation of  

the calculated lower limits of the allowed ranges 

of  a , ( then of the lower limits the correspond 

allowed bands  of  E ), we have always tolerated 

an error inferior to  0.01 per cent ( 0.01 ) , then 

an error inferior to one part of ten thousand ( 

then , our error of calculation in the following is 

always inferior to (1/10000).   

With the help of the figures.2 ;  we use the 

expression of the left side of the equation (18)  

we can determine the limits and the widths of the 

allowed ranges of the variable a  . Then , as 

given in the examples  here , with the value of 

the parameter p equals to  
 

 
    he lower  limit of 

the first allowed range of the variable   a equals 

to   
 

 
  , ( for p = 

 

 
   and a  =  /2 the left side of ( 

18 ) gives 1 ) and  the upper limit equals to   ;  

then the width of the first allowed range of the 

variable a  , with  p = 
 

 
  , equals  0.5   ; while 

the lower limit for the second allowed range 

equals to  1.2434    ( with this value of the 

variable a  , and with  p = 
 

 
  ,  the left side of 

(18) gives  -1.00000287 ) ,  and the upper limit 

for the second  allowed range of the variable 

equals to  2     then  the width of the second  

allowed range of the  variable a  equals to  

0.7566  ; and the lower limit for the third 

allowed range of a  equals 2.1457   ( with this 

value the left side of (18) gives 1.00003434 for p 

= 
 

 
) and the upper limit equals to 3  ; then the 

width of the third allowed range of the variable 

a , for p =  
 

 
  , equals to  0.8543     …etc. ; we 

continue the calculations  like this for the others  

allowed ranges of the variable  a  with p =  
 

 
  ; 

and for the others 5 allowed ranges  of the 

variable  a   with the others values of the 

parameter P.  

In Table.1 , we collect  the results of our 

calculations on the influence of the parameter  p  

of the equation (18) on the limits of the allowed 

ranges of the variable  a  for the six first allowed 

ranges of this variable . 



A numeric  Study  on the Influence of the  Values ……………………                              Saleh Saeed Barbaid 

511 

Tab.1 : Influence of the values of  p  on the limits of the allowed  
ranges of (  ) for the sixth first allowed ranges 

 

Value 
of 
p 

Limits of the allowed range of     for the : 
Lower and 

upper limits 
First range 

Second 
range 

Third range Fourth range Fifth range Sixth range 

 

 
 

 

lower limit 0.5  1.2434  2.1457  3.1018  4.0777  5.0625  

upper limit   2   3   4   5   6   

  
 

lower limit 0.63833  1.3958  2.2647  3.1933  4.1505  5.1226  

upper limit   2   3   4   5   6   

  

 
 

 

lower limit 0.71635  1.5  2.3604  3.27355  4.2175  5.1795  

upper limit   2   3   4   5   6   

2  
 

lower limit 0.7669  1.57527  2.43745  3.3432  4.2784  5.23235  

upper limit   2   3   4   5   6   

  

 
 

lower limit 0.8023  1.63183  2.5  3.4033  4.3331  5.2815  

upper limit   2   3   4   5   6   

   
 

lower limit 0.828465  1.6757  2.55133  3.4552  4.3822  5.3265  

upper limit   2   3   4   5   6   

  

From Table.1 , one can see clearly that the value 
of the parameter P has no influence on the values 
of the upper limits of the allowed ranges of the 
variable  a  for every one of the allowed ranges 
of the variable ; while the value of the lower 
limit of a given allowed range of the variable  a  
increases with the increase in value  of the 
parameter p . Then ,  the two limits of a given 
allowed range of the variable  a  become more 
closer  to the other when  the value of p increases  

Influence of the values of the parameter p on 
the widths of the allowed ranges and on the 
widths of the forbidden ranges of  a :  
By using the values in table.1,  we  calculate 
directly  the widths of the  first six allowed 
ranges of the variable  a  . We get table.2 which 
gives the widths of these  first sec allowed range 
of  the variable  a  for the values of the 
parameter p  equal to :    ,   , 3 /2 ,  2   , 5  
/2 and  3  respectively . 

 

Tab.2   :  Influence of the value of p on the widths of the allowed 
  ranges of (  ) for the first six  ranges 

 

Value of the 
parameter  p 

Width of the allowed  rang  of the variable     for the : 

First range 
Second 
range 

Third range Fourth range Fifth range Sixth rang 

 

 
 

 
0.5  0.7566  0.8543  0.8982  0.9223  0.9375  

  
 

0.36167  0.6042  0.7353  0.8067  0.8495  0.8774  

  

 
 

 
0.28365  0.5  0.63961  0.72645  0.7825  0.8205  

2  
 

0.2331  0.42473  0.56255  0.6568  0.7216  0.76765  

  

 
 0.1977  0.36817  0.5  0.5967  0.6669  0.7185  

   
 

0.171535  0.3243  0.44867  0.54448  0.6178  0.6735  
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From the values of  tab.1 or  of Tab.2  one can 

see clearly that : the width of each one of the  

first six  allowed ranges of the variable ( a) 

decreases with the increasing values of the 

parameter p , then we can expect that the width 

of any other allowed range of  ( a) decreases 

with the increase in values of the parameter p ; 

and then the influence of the increasing values of 

p on the width of a given forbidden range of ( a) 

is completely different , because each forbidden 

range of the variable  ( a) is between two 

allowed ranges . Then, the width of a given 

forbidden range of ( a) increases with the 

increase in the values of the parameter p . In 

reality ,  when the widths of two given allowed 

ranges decrease , the width of the forbidden 

range between them  increases , and vice versa , 

when the width of a forbidden range decreases 

the widths of its nearby allowed ranges increase . 

This evident result is seen clearly  with the 

values of the tab.2 and Tab.3  which give , 

respectively,  the widths of the  first six  allowed 

ranges and the widths of the first five forbidden 

ranges of ( a) with six different values of the 

parameter p . We can then  expect that , when the 

value of parameter p becomes very great , ( then 

,when p         ) , the  allowed ranges of ( a) 

reduce to the points :  n  ,       ( with n =  1,  2 

, 3,………) , because the lower limit of a given 

allowed range tends to have the value of the 

upper limit of this allowed ranges  when the 

value of p becomes infinite. 
 

Tab.3   :  Influence of the value of p on the widths of the  

forbidden  ranges of (  ) for the first five  ranges 
 

Value of the 

parameter  p 

Width of the allowed  range of the variable     for the : 

First range Second range Third range Fourth range Fifth range 
 

 
 

 
0.2434  0.1457  0.1018  0.0777  0.0625  

  

 
0.3958  0.2647  0.1933  0.1505  0.1226  

  

 
 

 
0.5  0.3604  0.27355  0.2175  0.1795  

2  

 
0.57527  0.43745  0.3432  0.2784  0.23235  

  

 
 0.63183  0.5  0.4033  0.3331  0.2815  

   

 
0.6757  0.55133  0.4552  0.3822  0.3265  

 

Influence of the value of the parameter p on 

the widths of the allowed energy bands: 

Between the value of the parameter   and the 

state E of energy , we have the direct relation (7) 

, and this relation we get the following relation : 

E =     /2m = 4   
2     /(8m   )

 
=      

/(8m  ) ,  (19) 

But the upper limits  of the allowed ranges of the 

parameter  a  are given by the expression :    a 

= n  , n =1,2,3,..  
  
then, by using the expression :     = n    , n 

=1,2,3,.. ; in  the relation (19) we get the 

expression of the upper limits of the allowed  

bands of energy En by the following  relation : 

En  = n
2
h

2
/(8ma

2
) ,           (20)  

where the integer number n denote the order of 

the allowed band of energy. 

For our following calculation of the widths of the 

allowed and forbidden bands of energy of the 

model , we take as unit of energy the quantity : 

A =h
2
/(8a

2
me) ,                     (21)  

where a is the period of the linear lattice , then 

the period of the periodic potential.  

With a = 4x10
-10

 m = 4x10
-8

cm , the value of our 

unity of energy equals to ; 

A = 3.7653x10
-19

 J = 2.35 eV ,  

and with  a = 5x10
-10

 m = 5x10
-8

 cm, its value is : 

A = 2.41x10
-19

 J = 1.5 eV  

By using the values of the tables : Tab.1 and 

Tab.2 ; we give in the Tab.4  the calculated 

values of the widths of the first six allowed 

energy bands of the Kronig-Penney model ;  and 

in the Tab.5 we give the calculated values of the 

widths of the first five  forbidden bands between 

these precedent allowed bands , with an error of 

calculation inferior to 0.01 per cent . ( 0.01  ) , 

as explained in a precedent paragraph of our 

study.
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Tab.4  :  Influence of the value of  p  on the widths of the allowed bands 

 of energy E for the first six allowed bands  

 

Value of the 

parameter  p 

Width of the allowed bands of E for the : 

First band 
Second 

band 
Third band Fourth band Fifth band Sixth band 

 

 
 

 
0.75 A 2.45396 A 4.39597 A 6.37884 A 8.37236 A 10.37109 A 

  

 
0.592535 A 2.05174 A 3.87113 A 5.80284 A 7.77335 A 9.75897 A 

  

 
 

 
0.486843 A 1.75 A 3.42851 A 5.28387 A 7.212694 A 9.17278 A 

2  

 
0.411864 A 1.518524 A 3.05884 A 4.82301 A 6.69529 A 8.622513 A 

  

 
 0.356315 A 1.337131 A 2.75 A 4.415749 A 6.224244 A 8.105758 A 

   

 
0.313646 A 1.192030 A 2.490715 A 4.0615930 A 5.796323 A 7.628398 A 

 

Tab.5  :  Influence of the value of  p  on the widths of the forbidden  

energy bands E for the five first forbidden bands  

 

Value of the 

parameter  p 

Width of the forbidden  energy band  E  for the : 

First band Second band Third band Fourth band Fifth band 
 

 
 

 
0.546044 A 0.604028 A 0.621163 A 0.627637 A 0.628906 A 

  
 

0.948258 A 1.128866 A 1.197165 A 1.226650 A 1.241031 A 

  

 
 

 
1.25 A 1.571488 A 1.716130 A 1.78731 A 1.827220 A 

2  

 
1.481476 A 1.941163 A 2.176986 A 2.304707 A 2.377487 A 

  

 
 1.662869 A 2.25 A 2.582451 A 2.775756 A 2.894242 A 

   
 

1.80791 A 2.509285 A 2.93841 A 3.203677 A 3.371602 A 

 

As examples , with a = 4x10
-8 

cm the width of the first allowed band passes from  1.763 eV to 1.393 eV ; 

when the value of p passes from      to 

                                                                        passes from      to 2  , 

and  the width of the fifth allowed band its width passes from  19.675 eV to 18.267 eV ; when the value 

of p passes from  
 

 
 to                                                                            

passes from      to 2  ; While , with a = 5x10
-8 

cm the width of the first allowed band passes from  1.125 

eV to 0.889 eV  ; when the value of p passes from      

to                                                                        passes from      to 2  

, and  the width of the fifth allowed band passes from  12.559 eV to 11.660 eV ; when the value of p 

passes from  
 

 
 to                                                                           

passes from      to 2  ,  
With the values of these  last two tables ,  we see with clarity that , the width of a given allowed energy 
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band decreases with the increasing values of the parameter p , and on the contrary , the width of a given 

forbidden band increases with the increasing values of p . At the limit , when p becomes very great               

( p            ) , the allowed bands become infinitely narrow and the energy spectrum becomes a line 

spectrum . In reality, in that case , the equation (18) has only solutions if we have : sin(  ) = 0, i.e., if    

= n  ,with n = 1, 2, 3, 4, ….;  and then , the energy spectrum is  given by : 

En = n
2
h

2
/(8ma

2
)   , for  p                 

 

Conclusion : 

In conclusion, our calculation on the influence of 

the parameter P of the model of Kronig-Penney 

on the widths of the bands of energy in the 

solids,  revealed the following results: 

1- The model shows clearly the structure of the 

bands for the states of energy in the solids . 

2- The width of one allowed band increases with 

its order. 

3- The increase of the value of the parameter p 

decreases the widths of allowed bands of energy 

and increases the widths of the forbidden bands 

of energy . 

4- At the limit , when the value of p becomes 

infinite the spectrum of energy in the crystal 

becomes a line spectrum . 

5- The widths of the allowed bands of energy 

depend  grandly on the value of the parameter of  

crystal lattice , the width of an allowed band 

decreases with the increase in the value of the 

parameter of the lattice and the width of a 

forbidden band increases with the increase in the 

value of the parameter of the lattice. 
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الطاقة على  بيني لحزم-لة نموذج كزونجددراسة رقمية لتأثير قيمو البارمتر        في معا
جسام الصلبةلأعزض ىذه الحزم في ا  

 

 سعيد باربيد صالح
 

 الممخص
 

ن البنية أقمنا بإثبات كيف مة لبموش حول حمول معادلة شرودين جير مع الجهود الدورية , همن ذكرنا بالنظرية الأفي هذا البحث , بعد 
بيني لحزم الطاقة في الأجسام الصمبة تظهر بصورية جمية  - الدورية لآبار الجهد المربعة في بعد واحد المستخدمة في نموذج كونج

المعادلة النهائية في  p دخال البارامتر إعة في الأجسام الصمبة المتبمورة. وبينا أبضا كيف يتم وواضحة بنية حزم الطاقة المسموحة والممنو 
المسموحة عرض )اتساع( حزم الطاقة  فيظهرت كيفية تأثير هذا البارامتر أة . ثم قمنا بدراسة رقمية وافية لهذا النموذج لحزم الطاق

ن عرض حزمة ممنوعة إالبارامتر , وعمى العكس من ذلك فن عرض حزمة مسموحة ما يتقمص مع زيادة قيمة هذا أوالممنوعة . لقد وجدنا 
 . pما يزيد بزيادة قيمة البارامتر 

 جهد دوري , مدى مسموح , مدى ممنوع , منطقة )حزمة( طاقة مسموحة , منطقة ممنوعة .   كممات مفتاحية :
 

 

 

p 


