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A numeric Study on the Influence of the Values of the Parameter P in
Kronig — Peneny Equation on the Width of the Bands

Saleh Saeed Barbaid*

Abstract

After showing the importance of Bloch Theory about Schrodinger' equation solution with a periodic potential; we
demonstrated that the periodic structure of square well in one dimension of the model of Kronig-Penney on the band
theory of solid, shows clearly the structure of the allowed and forbidden bands in the in the crystalized solids and
we showed how we can introduce the parameter p in the final equation of this model of bands. Then, we conducted a
sufficient study on the influence of this parameter on the widths of the allowed and forbidden energy bands in the
crystals. We find that, the width of an allowed band decreases with the increase in the value of this parameter, and the
width of a forbidden band increases with the increase in the value of this parameter.
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Introduction:
In 1928 Bloch has proved the important theorem
that the solutions of the Schrdédinger equation
with a periodic potential are, in three dimensions,
of the form [1,2,3,4]:

@i (7) = u (7) exp(ik. 7) (1)
In one dimension , the solutions are reduced to
an expression of the form [ 1 ] :
i (%) = uy (x) exp(ikx) (1)
Where u () and ( u (x) ) are functions
depending on the wave vector k ; (‘on the wave
number k , respectively , which is periodic in
X, ¥, and z ; ( which is periodic in x ) , with the
periodicity of the potential , that is with the
period of the lattice of the crystal . The solutions
of the form (1) ; and ( of the form ( 1), are
known as Bloch functions in three dimensions ;
( in one dimension ). We see that a Bloch

function is a plane wave: ( exp(iE. 7)) which is
modulated with the period of the lattice.

Since that date , the Bloch functions were
largely used in the study of the solid state ,
especially in the study of the propagation of
waves associated with the motion of electrons
and holes in the crystals [1,2,3,5,6,7,8,9
, 13,14 ,15,16,17].

If we consider N lattice points on a ring of length
Na , with N —=> oo ; and if we suppose that the
period of the potential is a, so that :
V(x)=V(x+ga), wheregisan integer,
Then, because of the symmetry of the ring , we
look for eigen-functions ¢ ( x ) such that :

p(x+a)=cp(x),
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Where c is a complex constant , then, [3,5,6,7
,9,15] we have :

p(x+tga)=cto(x);

and , if the eigen-function is to be single-value,
then :

p(x+Na)=c"o (x)=¢(x),

so that c is one of the N roots of the unity [ 3, 6,
7,9,15], then:

c=exp(i2ng/N); g=0,1,2,3,........ , N-1.

So that the Bloch function in one dimension is
writing :

@(x) = exp(i2mgx/(Na)) uy(x) 2)

where uy(x) has the periodicity a of the linear
lattice , and if we write :.

k =2mg/(Na),

then , the Bloch function in one dimension ,
which a satisfactory solution of Schrddinger
wave equation, in one dimension is given by the
expression :

(%) = exp(ikx)u,(x) 3)

At the beginning of this research , we showed
the expressions of Schrodinger wave equations
used for the one dimensional periodic potential of
the model of Kronig - Penney [ 6 ,7, 10, 12, 15].
Then , after we had found the expression of the
determinant of the system of the four linear
homogeneous equations obtained from the
equations of Schrodinger for the model, we wrote
the condition on this determinant which gives the
acceptable  solutions of the four linear
homogeneous equations . After that we gave the
expression of the parameter p [6, 7, 10, 12,157,
then we established the handier equation of the
model of Kronig- Penney which contain the
parameter p and which determines the ranges of
allowed and forbidden bands of the energy E [ 6,7,
10,12, 15] . At the end of this research we gave a
large numeric study on the influence of values of
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the parameter p on the widths of the allowed bands
and forbidden bands of energy in the crystalized
solids .

Kronig-Penney model:

In this model , largely used in the band theory of
solids , we dealt with a periodic square-well
potential in one dimension ( see figure 1 ). This

model is largely artificial , but it is a model
which can be treated explicitly , using only
elementary functions, and we could with this
model, demonstrate some of the fundamental
characteristic features of electron propagation in
crystals [ 5 , 6 , 10 , 12 , 17 ]

=(a+)

Fig.1 : Kronig and Penney one dimensional periodic potential.

The Schrodinger wave equation of the
problem is:
2
D I (E-V)p®) =0 @)
The running wave solutions will be of the form
of a plane wave modulated with the periodicity
of the lattice.
By substituting (3) into (4), we get ,
duC) | i GU 2M B By k) =0 (5)
dx? dx h?
where E, = h’k*/(2m)
In the region : 0 < x < a; and in the regions
which are equivalent to this region , (for example
, the region : - (a +b) < x < - b ; see the figure
1), the general solution of the equation (5) has
the form [4,6,7,11]:
up(x) = Aexpli(a - k)x] + Bexp[-i(a + k)x]  (6)
Where we pose : @ = [2mE/ A* 1" , and (7
A and B are two constants of integration.
In the region : a < x<a+b; and in the
regions which are equivalent to this region, ( for
example , the region : - b < x < 0 ; see the
figure 1), the general solution of the equation (5)
has the form [4,6,7,11]:
un(x) = Cexp[(B - ik)x] + Dexpl[-(8+ ik)x]  (8)
Where we pose : 8 = [2m( Vo—E)/ 121", and (9)
C and D are two constants of integration .
From the continuity of the wave functions at the
points : x =0 and x = a , we have respectively :
Uk (0) = uy(0) , and ; uy(a) = uy(a) ; then we
get , respectively ,
A +B -C -D =0 (a)

PV
VO
0 a a+b X_‘_)"
and A ,
[el(a -K)a ]A + [e-l(a +k)a ]B _ [e([} -ik)a ]C _ [e-(ﬁ
"D =0 (b

and from the continuity of the derivatives of the
wave functions at the points : x =0 and x =a ;
we have respectively (du/dx)s=o
=(duy/dx)s=o , and; (dup/dx)= =(dus/dx)s=, ;
then we get , respectively,

li(a -KIA - [il@+K)IB - [(B -K]C + [(B
+k)]|D =0; (c)

and

li(a -k)e * ™ JA — [i(o +k)e™™ ™ 1B - [( B -
ik)e® ™ 1C + [(p+ik)e® M ID=0.  (d)
The periodicity of uy(x) and u,(x) and of their
derivatives requires that the values of u;(x) and
U(x) and of (du;/dx) and (duy/dx) at the point
x =amust be equal to those at the pointx=-b,
then we have : ujp(a) = uy(a) = uy(-b) and
(du/dx)s— = (duy/dx)—p, ; then we rewrite the
equations (b) and (d) , respectively , as follows :
[ K2 A + [l R - [ Fib e _[elP
D =0;  (b)

and

[i(a -k)e" ™ JA — [i( o +k)e™ B - [(B -
ik)e P 1C + [(B+k)e P ID=0.  (d)
The constants A , B, C and D must be chosen in
such a manner that the four conditions giving by
the equations : (a) , (b), (c) and (d) are satisfied ,
then the wave functions may be calculated by
determining the values of these precedents
constants . However, here we are more interested
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in determining the values of the energy E for
which satisfactory solutions are obtained ,then :

if we put :
dy=1; dp=1; dz=-1; du=-1; dy=
i(a-k); dp=-i(atk); dy=-(B-ik); (10a)

dy=P+ik); d3 = el e on ; dyp = el a

dy3= et -ik)b; dyy= -e(Pri® 5 (10b)

d“ . ..d14

Here , we are not interested in the determination
of the solutions (6) and (8) of the running waves
in the periodic potential in one dimension of the
model which are obtained by determining the
values of constants : A, B, C and D which
determine the solution of the system (11) of the
four linear homogeneous equations , but we are

dyy dpp diz dig
dy dyy dys doy - dy dy dy
NS
4y dy e du =(-1)"dy 4y dy du
dy dyp dyz dyg dyp dyy dag
dyy dyp dy
+ (D' dys G dy du
do day dus

day = i(a k) ™ 5 dyy = -i(a +k)e P dyy =
(B -ik)e PP and dy, = (B+ik)e P ™ (10c)

then, we will be able to rewrite the precedent
system of the four linear homogeneous equations :

(@, ((b), (¢ ) and (d) as follows:
A 0

B 0 (11)

C 0

D 0

more interested here in finding the values of the
energy E for which satisfactory solutions can be
obtained , from which we can determine the
limits of the bands of energy in the solid .

The determinant of the system (11) of the four
linear homogeneous equations is written as:

dy; dy dyy
+(-D"dp, d3; dy; diy
dy; dyg3 dyg
dy; dyp dy
+(-D'"dy, dy dyn dy
dyy dgp dgs
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Then , we have,

dyy...dis
= d11d44[d22d33 - d32d23 ]+d11d42[d23d34 - d24 d33 ]+ d11d43[d32d24 _d22d34] -

dgp ... dy dipdas[dzidss - d31das ]- dizadai[dasdss — dos dss ]- di2das[dsidas —daidsg] +
di3das[daidsz — dodsi] +di3da[dys dss —dss dpg] +di3daa[d3idag- daidss] -
di4dys[daidsz — dpodsi] - digdai[das dsz —dss dps]- diadas[dsidas- dasda] (12)

By using the expressions of the coefficients : dy; after the necessary arrangement of the terms of
,di, di3 and dj4 which were giving in (10a) , in this expression , we get the following equation :
the expression (12) of the determinant, and

dyy...dy
= (dyy— day)[ d33dag — d3adss ]+ (dgy — dgo)[d33dog — dssdas ] +
dyp...dgs | (d33 —dag)[ dapdy; — dpydys] + (dap — dsp )[dasdas — dagdps 1+
(dag - ds3)[d31dan — d3odyy ]+ (dog - dp3 )[daydsy — dgpds; ] (13)

By the use of the expressions of the coefficients dj; , which were giving in (10a) , (10b) and (a0c) , in the
terms of the second member of (13) ; we get the expressions of these terms as in the following :
[d33d54 — dsadss] = [-2Bcosh(Bb) + i2ksinh(Ab) Jxe™
(ds1_d 4) = iQacos(aa) — 2iksin( aa) )xe ™
then ,(d4; — dgp )[d33das — dssdas] = 4i{-afcosh(Bb)xcos(aa) +iakcos(aa)xsinh(Sb) +
iBkcosh(fb)xsin(aa) + k*sinh(Bb)xsin(aa)}xe'*** (14a)
[daodsy — daidsy ] = -2i(k* —a?)xsin(ara)xe™
(ds3 — ds4 ) = 2sinh(Bb)xe™
then,
(d33 —d34)[dards; — da1dsn] = 4i(a? — k)xsinh(Bb)xsin(aa)xe' " (14b)
[ds3dzs — dasdas] = 2(B? +k* )xsinh(Bb)xe"®
(ds; — d3;) = -i2sin(aa)xe ™
then,
(dsz — d31 )[dyzdas — dasdy3] = -4i(B 24k )xsinh(f b)XSin(aa)Xei(b_a)k (14c)
[d31d — d3ady ] = -i2[ acos(aa) +iksin(aa)]xe ™
(dgs -ds3 ) = 2[Bcosh(Bb) +iksinh(Bb)]xe™®

then,
(d4g —d43)[d31day — d3ndyi] = 4i{-Bacosh(Sb)xcos(aa) —ifkcosh(Sb)xsin(aa) —
~ iaksinh(Bb)xcos(ara) + k’sinh(Bb)xsin(aa)}xe'®** (14d)
(d33das — d3adas] = -28 xe!
(d22 — d21 ) =-2ai
then, .
(d22 — dy1 )[d33dag — d34das] = 4iaf e (14¢)
and ,
[da1ds; — dspdsi] = 2iae™
(dag — dp3) = 2P
Then, .
(ds — dp3)[da1d3y — dyodsy ] = 410-’36_2"1]( (149)
If we make the addition of the expressions (14a) determinant (13) of the system of the four linear
to (14f) then , we obtain the expression of the homogeneous equations as a function of the
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wave vector k . This expression is given by,

4i{[-2a S cosh(Bb)xcos(aa)+ (>~ B )
sinh(Bb)xsin(aa) Jxe'®* +af[e™™ + e |} (15)
The system (11) of the four linear homogeneous
equation has a solution ( on addition to the trifle
solution: A=B=C=D=0), if the expression
(15) of the determinant (13) of the coefficients
d;; vanishes. But, if we multiply the expression
(15) by (1/i4) x exp[i(a-b)k] , this expression t
remains unchanged . Then , after the
multiplication of the expression (15) of the
determinant (13) and make the result of the
multiplication equal to zero ; and after the
rearrangement of the terms of the obtained
expression, we get the following condition:

[(B?*- a®)/2(af)]xsinh(Bb)xsin(aa) +
cosh(fb)xcos(aa) = cos[(atb)k] (16)
In order to obtain a handier equation, we can
represent the periodic square potential of the
model by a periodic delta function , by passing to
the limit where b=0 and Vo—>oo, insucha
way that the product : (82b/2) stays finite [5 ,6 7,
12,17].

Then , if we set ,

lim(B%ab/2) =p , 17)

b—> 0

[}2900

with (8%b/2) stays finite and different from zero ,
we obtain the handier equation :

p[sin(aa)/(aa)] + cos(aa) = cos(ka) (18)
This equation is the final equation of the model

of Kronig-Penney and we use this equation for
our numeric study on the influence of the values
of the parameter p on the widths of the firsts
allowed and forbidden bands in the crystals .
Results and discussion of the numeric study
on the influence of the parameter p on the
widths of the bands :

In order to have wave functions of the form (3) ;
in other words , for Bloch functions to exist ; the
transcendental equation given by the relation
(18) must have a solution for the variable (ac ) ,
then for the energy E of the states. As the cosine
term on the right side of the equation (18) can
have values only between -1 and +1 , then only
those values of the parameter (a) are allowed
for which the left side falls in this range (
between -1 and +1) .

Influence of the values of the parameter p on
the limits of the allowed ranges of the variable
aa for the six firsts allowed zones :

For finding the allowed ranges of the variable
(aa), which are functions of the energy E of
states , then of the wave vector k , we
commence our study by plotting the left side of
the equation (18) (  the  expression
plsin(aa)/(@a)] + cos(aa) ), as function of the
variable a¢ between the values : aa = —6m and
aa = + 6m of this variable . The Fig.2a is
plotted for p = m/2 and the figures : Fig.2b ,
Fig.2c,......,and Fig.2f are plotted for the value
of the parameter p equals to : m, 3n/2, 2w, 5%
/2 and 3m respectively . The allowed values of
the variable aa are drawn heavily on these six
figures .
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Fig.2.a Plot of the function: p—— +cos(aa) , for p = g
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Fig.2. b Plot of the function: p —— ) 4 cos(aea), forp=m
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Fig.2. ¢ Plot of the function : p ( )+cos(aa) forp=
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Fig.2.d Plot of the function: p
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191



Saleh Saeed Barbaid

s

p

sin(aa)

2 tcos(aa)

g

In the six precedent figures ( the figures from
the Fig.2a to the Fig.2f ) one can see clearly
that , with a given value of the parameter p , the
upper limit of an allowed range of the parameter
(aax) , which has the order n is given by nm ,
where n =1, 2 ,3, ... Then we can always
know exactly the value of the upper limit of an
allowed range of aa , ( then we can know
exactly the value of the upper limit of the
correspond allowed energy band E ). The value
of the lower limit of an allowed range of the
parameter aa, ( then the value of the lower limit
of the correspond allowed energy band E ) , can
sometimes be know exactly and sometimes can
be calculated with the tolerated percentage on the
error of the calculation . In our calculation of
the calculated lower limits of the allowed ranges
of aa , ( then of the lower limits the correspond
allowed bands of E ), we have always tolerated
an error inferior to 0.01 per cent ( 0.01%) , then
an error inferior to one part of ten thousand (
then , our error of calculation in the following is
always inferior to (1/10000).

With the help of the figures.2 ; we use the
expression of the left side of the equation (18)
we can determine the limits and the widths of the
allowed ranges of the variable ac . Then , as
given in the examples here , with the value of
the parameter p equals to g : the lower limit of

the first allowed range of the variable aa equals

xq
XT

Fig.2.f Plot of the function: p ﬂ:;{f—@ +cos(aa),forp=3m

to g ,(forp= g and aa = /2 the left side of (
18 ) gives 1 ) and the upper limit equals to 7 ;
then the width of the first allowed range of the
variable aa , with p = % , equals 0.5m ; while
the lower limit for the second allowed range
equals to 1.2434m ( with this value of the
variable aa , and with p = % , the left side of
(18) gives -1.00000287 ), and the upper limit
for the second allowed range of the variable
equals to 2m; then the width of the second
allowed range of the wvariable aa equals to
0.7566m ; and the lower limit for the third
allowed range of aa equals 2.1457m ( with this
value the left side of (18) gives 1.00003434 for p
= g) and the upper limit equals to 3m ; then the
width of the third allowed range of the variable
aa, for p = g , equals to 0.8543m, ...etc. ; we
continue the calculations like this for the others
allowed ranges of the variable aa with p = g ;
and for the others 5 allowed ranges of the
variable aa with the others values of the
parameter P.

In Table.l , we collect the results of our
calculations on the influence of the parameter p
of the equation (18) on the limits of the allowed
ranges of the variable aa for the six first allowed
ranges of this variable .
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Tab.1 : Influence of the values of p on the limits of the allowed

ranges of (aa) for the sixth first allowed ranges

Value Limits of the allowed range of aa for the :
of Lower. aqd First range Second Third range | Fourth range | Fifth range | Sixth range
p upper limits range
T lower limit 0.57 1.2434n 2.1457xw 3.1018m 4.077Tm 5.0625m
2 upper limit T 2n 3m 4 5w 6m
. lower limit 0.63833m 1.3958m 22647 3.1933xm 4.1505m 5.1226m
upper limit 4 2w 3w 4w Sw 6m
3n lower limit 0.71635m 1.5m 2.3604m 3.27355m 4.2175m 5.1795w
2 upper limit T 2m 3m 4m Sw 6m
.- lower limit 0.7669m 1.57527m 2.43745m 3.3432m 4.2784n 5.23235m
upper limit s 2w 3m 4w Sw 6m
. lower limit 0.8023m 1.63183m 2.5m 3.4033m 4.3331m 5.2815m
2 upper limit s 2w 3m 4w Sw 6m
5 lower limit 0.828465m 1.6757m 2.55133m 3.4552m 4.3822m 5.3265m
I
upper limit T 2m 3m 4m Sw 6m

From Table.1 , one can see clearly that the value
of the parameter P has no influence on the values
of the upper limits of the allowed ranges of the
variable aa for every one of the allowed ranges
of the variable ; while the value of the lower
limit of a given allowed range of the variable aa
increases with the increase in value of the
parameter p . Then , the two limits of a given
allowed range of the variable aa become more
closer to the other when the value of p increases

Influence of the values of the parameter p on
the widths of the allowed ranges and on the
widths of the forbidden ranges of aa:

By using the values in table.1, we calculate
directly the widths of the first six allowed
ranges of the variable aa . We get table.2 which
gives the widths of these first sec allowed range
of the variable aa for the values of the
parameter p equal to : ©/2, m,3n/2, 27w, 5S¢
/2 and 3m respectively .

Tab.2 : Influence of the value of p on the widths of the allowed
ranges of (aa) for the first six ranges

Width of the allowed rang of the variable aa for the : |
Value of the S q
parameter p First range rz(l:logrzz Third range | Fourth range | Fifth range Sixth rang
i
2 0.5m 0.7566m 0.8543m 0.8982m 0.9223x 0.9375m
T 0.36167m 0.6042m 0.7353m 0.8067m 0.8495m 0.8774mn
3
B3 0.283651 0.5m 0.63961m 0.72645m 0.7825m 0.82057
2 0.2331m 0.42473m 0.56255m 0.6568m 0.7216m 0.76765m
5; 0.1977m 0.36817m 0.5m 0.5967% 0.66697 0.7185m
3m 0.171535m 0.3243m 0.44867m 0.54448m 0.6178m 0.6735m
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From the values of tab.l or of Tab.2 one can
see clearly that : the width of each one of the
first six allowed ranges of the variable (aa)
decreases with the increasing values of the
parameter p , then we can expect that the width
of any other allowed range of (aa) decreases
with the increase in values of the parameter p ;
and then the influence of the increasing values of
p on the width of a given forbidden range of (aa)
is completely different , because each forbidden
range of the variable (aa) is between two
allowed ranges . Then, the width of a given
forbidden range of (@a) increases with the
increase in the values of the parameter p . In

range between them increases , and vice versa ,
when the width of a forbidden range decreases
the widths of its nearby allowed ranges increase .
This evident result is seen clearly with the
values of the tab.2 and Tab.3 which give ,
respectively, the widths of the first six allowed
ranges and the widths of the first five forbidden
ranges of (aa) with six different values of the
parameter p . We can then expect that , when the
value of parameter p becomes very great , ( then
,when p —> o0 ), the allowed ranges of (aa)
reduce to the points : nrm , (withn= 41, £2
A3, ), because the lower limit of a given
allowed range tends to have the value of the

reality , when the widths of two given allowed upper limit of this allowed ranges when the
ranges decrease , the width of the forbidden value of p becomes infinite.
Tab.3 : Influence of the value of p on the widths of the
forbidden ranges of (aa) for the first five ranges
Value of the Width of the allowed range of the variable aa for the :
parameter p First range Second range | Third range | Fourth range Fifth range
T
2 0.2434m 0.1457m 0.1018m 0.0777r 0.0625m
T 0.3958m 0.2647r 0.1933x 0.15057 0.1226m
3
2 0.5m 0.3604m 0.27355m 0.2175m 0.1795m
2m 0.57527m 0.43745m 0.3432r 0.2784m 0.23235m
571-[ 0.63183m 0.5m 0.4033m 0.3331m 0.2815m
3 0.6757m 0.55133m 0.4552r 0.3822m 0.3265m

Influence of the value of the parameter p on
the widths of the allowed energy bands:
Between the value of the parameter @ and the
state E of energy , we have the direct relation (7)
, and this relation we get the following relation :
E = a?hA?2m = 4n? * a?h%/(8mn? ) = a?h?
/(8mm?), (19)

But the upper limits of the allowed ranges of the
parameter a¢a are given by the expression : apa
=nm,n=1,2,3,..

then, by using the expression : @, = nmw/a , n
=1,2,3,.. ; in the relation (19) we get the
expression of the upper limits of the allowed
bands of energy E, by the following relation :

E, =n’h*(8ma’), (20)

where the integer number n denote the order of
the allowed band of energy.

For our following calculation of the widths of the
allowed and forbidden bands of energy of the

model , we take as unit of energy the quantity :

A =h%/(8a’m,) , (21)

where a is the period of the linear lattice , then
the period of the periodic potential.

With a = 4x10"% m = 4x10%cm , the value of our
unity of energy equals to ;
A=3.7653x10"J=235¢eV,

and with a=5x10""m=5x10% cm, its value is :
A=241x10"J=15eV

By using the values of the tables : Tab.l and
Tab.2 ; we give in the Tab.4 the calculated
values of the widths of the first six allowed
energy bands of the Kronig-Penney model ; and
in the Tab.5 we give the calculated values of the
widths of the first five forbidden bands between
these precedent allowed bands , with an error of
calculation inferior to 0.01 per cent . ( 0.01% ),
as explained in a precedent paragraph of our
study.
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Tab.4 : Influence of the value of p on the widths of the allowed bands
of energy E for the first six allowed bands

Width of the allowed bands of E for the :
Value of the 3 d
parameter p | First band Ezzg Third band | Fourth band Fifth band Sixth band
T
2 075 A 2.45396 A 4.39597 A 6.37884 A 837236 A | 10.37109 A
T 0.592535 A | 2.05174 A 3.87113 A 5.80284 A 7.77335 A 9.75897 A
3
) 0.486843 A 1.75 A 3.42851 A 528387 A | 7212694 A | 9.17278 A
n 0411864 A | 1.518524 A | 3.05884 A 4.82301 A 6.69529 A | 8.622513 A
5; 0356315 A | 1.337131 A 275 A 4415749 A | 6.224244 A | 8.105758 A
3 0.313646 A | 1.192030 A | 2.490715 A | 4.0615930 A | 5.796323 A | 7.628398 A
Tab.5 : Influence of the value of p on the widths of the forbidden
energy bands E for the five first forbidden bands
Value of the Width of the forbidden energy band E for the : |
parameter p First band Second band Third band Fourth band Fifth band
T
2 0.546044 A 0.604028 A 0.621163 A 0.627637 A 0.628906 A
T 0.948258 A 1.128866 A 1.197165 A 1.226650 A 1.241031 A
3
2 1.25A 1.571488 A 1.716130 A 1.78731 A 1.827220 A
2 1.481476 A 1.941163 A 2.176986 A 2.304707 A 2377487 A
5; 1.662869 A 225A 2.582451 A 2.775756 A 2.894242 A
3m 1.80791 A 2.509285 A 293841 A 3.203677 A 3.371602 A

As examples , with a = 4x10™ cm the width of the first allowed band passes from 1.763 eV to 1.393 eV ;
when the value of p passes from /2 to
7, and its value passes from 1.763 eV to 0.968 ev when the value of p passes from m/2 to 21 ,
and the width of the fifth allowed band its width passes from 19.675 eV to 18.267 eV ; when the value
of p passes from g to m,and its width passes from 19.675 eV to 15.734 ev when the value of p

passes from /2 to 2mr ; While , with a = 5x10"® cm the width of the first allowed band passes from 1.125
eV to 0.889 eV ;  when the wvalue of p passes from /2
torr, and its width passes from 1.125 eV to 0.618 ev when the value of p passes from m/2 to 2m
, and the width of the fifth allowed band passes from 12.559 eV to 11.660 eV ; when the value of p

passes from g to m,and its value passes from 12.559 eV to 10.043 ev when the value of p

passes from /2 to 2 ,
With the values of these last two tables , we see with clarity that , the width of a given allowed energy
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band decreases with the increasing values of the parameter p , and on the contrary , the width of a given
forbidden band increases with the increasing values of p . At the limit , when p becomes very great
(p ——> ), the allowed bands become infinitely narrow and the energy spectrum becomes a line
spectrum . In reality, in that case , the equation (18) has only solutions if we have : sin(aa) =0, i.e., if aa
=nr ,withn=1,2, 3,4, ....; and then, the energy spectrum is given by :

E,=n’h%(8ma®) , for p——> @

Conclusion :

In conclusion, our calculation on the influence of
the parameter P of the model of Kronig-Penney
on the widths of the bands of energy in the
solids, revealed the following results:

1- The model shows clearly the structure of the
bands for the states of energy in the solids .

2- The width of one allowed band increases with
its order.

3- The increase of the value of the parameter p
decreases the widths of allowed bands of energy
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and increases the widths of the forbidden bands
of energy .

4- At the limit , when the value of p becomes
infinite the spectrum of energy in the crystal
becomes a line spectrum .

5- The widths of the allowed bands of energy
depend grandly on the value of the parameter of
crystal lattice , the width of an allowed band
decreases with the increase in the value of the
parameter of the lattice and the width of a
forbidden band increases with the increase in the
value of the parameter of the lattice.
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