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Abstract: Solving Dirichlet-type boundary value problems (BVPs) using a novel numerical approach is presented
in this study. The operational matrices of DP-Ball Polynomials are used to solve the linear second-order BVPs. The
modification of the operational matrix eliminates the BVP's singularity. Consequently, guaranteeing a solution is
reached. In this article, three different examples were taken into consideration in order to demonstrate the
applicability of the method. Based on the findings, it seems that the methodology may be used effectively to

provide accurate solutions.
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1. Introduction

A numerical approach for addressing singular second-order
linear boundary value problems of the Dirichlet type is
provided. These kinds of problems occur in different
applications, such as structural mechanics, chemical
reactions, and gas dynamics. The existence and uniqueness
of the solution for such problems were described in [1].
Series solutions, Chebyshev polynomials, B-splines, and
cubic splines [2]-[5] have been taken into consideration by a
number of investigators to solve these kinds of BVPs.
Moreover, additional methods include fitted mesh [6],
Green's functions and decomposition [7] and Green's matrix
[8]. Methods which are based on reproducing kernel space
[9], [10], Sinc collocation method [11], Sinc Galerkin
method [12], and an iterative predictor-corrector type
method which is based on finite difference approximation
[13] are also included in latest results. There have been
some reviews of existing methods based on Bernstein
functions published in [14] and [15]. Chebyshev collocation
method [16] was presented to solve the singular two-point
boundary value problems of differential equations. The
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Adomian decomposition method is used to solve a class of
singular differential equations with Dirichlet conditions
[17]. Dejdumrong operational matrix [18] was applied to
obtain the solutions of some types of differential equations.
Haar wavelet collocation method was introduced to get the
solution of Lane-Emden equations with Dirichlet and
another type of boundary conditions [19]. Lately, there are
some authors who have studied the given problem with
Dirichlet boundary conditions [20, 21, 22].

This article aims to develop an improved
operational matrix as a numerical method for solving singular
second-order Dirichlet-type boundary value problems. Asides
from this introductory section, a review of the Ball
polynomial is presented in Section 2, with applications of the
operational matrix of derivative explained in Section 3.
Relevant numerical problems are considered in Section 4,
where the results and comparison with other authors are
shown. The article is concluded in Section 5.

2. Review on Ball Polynomial
The Ball polynomial was declared by A. A. Ball in his well-
known aircraft design system CONSURF in [23]. It is
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described as a cubic polynomial and explained
mathematically as
(1-0%2t(1—-0)%2t2(1—1t),t%, 0<t < 1. (1)

The high generality of the Ball polynomial has been the subject
of discussion in a number of recent papers, as well as its
properties. For example, in the 1980s, there were two different
Ball polynomials of arbitrary degree. These polynomials, which
were given the names Said-Ball and Wang-Ball, [24]-[26] and
DP-Ball, were another generalization of the Ball polynomial
that came out in 2003 [27].

A. DP-Ball Polynomial Representation

The degree m DP-Ball polynomial [27] is defined by:
(- @=-om
t(1—t)m

,i=0,
JSisELA,
i)
ple]

5|+1<i<m,

DM (t) = < K{M(E) + KM (@) @)
KM(E) + K3 (D)

Dm-i(1—1t)

and
s = ()2 2 (1 il 1ol
s = ([p] - )« - o

1 1 1
w0 =)o

2 2
[t] and [t] denote the greatest integer less than or equal to,
and the least integer greater than or equal to t , respectively.
Definition:
The DP Monomial matrix form can be formulated in the
form by [28]

rdoo  dor dOm]
dio diy dim |
D = : : : , (3)
ldmo  dm1 v dmm (m+1)x(m+1)
where

(—1) (?) fori =0,
(=1)/-1 Cl—_ll) for 0 < if EJ -1,
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J 2i-n
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The following are some of the properties that are satisfied
by the DP-Ball basis function:
The DP-Ball basis function is non-negative; that is,

D*(t)=0,vi=0,1,--,m. (5)
The partition of unity that is,
Zﬁo 2)im =1 (6)

In general, we approximate any function y(t) with the first
(m + 1) DP-Ball polynomials as:

y() = X DM () = CTp(t) = C"DT(),  (7)
where  CT =[co,cqy o), T®)=[1 t ..t™]T

and D is the DP monomial matrix form given in (3). The
operational matrix of the derivative of the DP-Ball

polynomials set ¢ (t) is given by
% =DMe¢p(t) is the m+ 1 by m + 1 operational
matrix of the derivative is defined as:

d o d
afi)(t) = E( )

=plix
dx
= (DVDH)DX
= DWep(x). (8)
Hence
DWW =pyp1, 9)
where D is DP-Ball monomial matrix form, and
_(Jj i=j+1L
V= {O , otherwise. (10)
We can generalize Equation (9) as
dar n—-1 d dn—l -
2?0 = g (g 90) = g 0V 9(0) = -
= (DDY¢pt) =DMWpt), n=12,..
B. Practical Implementation of the Derivational

Operational Matrix:

Within this part, we will provide the derivation of the
technique for solving differential equations of the type

Po(D)y”(t) + 1 (DY’ (1) + P (O ()" = g(B), (11)
with Dirichlet boundary conditions

y(0)=ay, y@1)=a,. (12)
Where p;(t), j=012, a;i=1,2and g(t) are
known, while y(t) is unknown.

Approximating Equation (11) by DP-Ball Polynomials as
follows:

Po(CTDPP(t) + p1 (CTDD(8) +
n
p2O(CTP(®) =6TPp(. (13

Where GT = [go, g1, » gm], We can write the residual
R(t) for Equation (13) as
R(t) = po(DCTDPP(t) + p1()CTDDp(2)

+p2(O(CTP(O)" — G (1) (14)
To find the solution of y(t) given in (11), we first collocate
(14) at (m — 1) points. For suitable collection points, we

40



NA Sz

Hadhramout University Journal of Natural & Aoplied Science Vol 19 No 1 (2022) 39-44

(@)],i =01,--,m—1.
2 m+1

Together, these equations with (12) generate (m+1)
nonlinear equations that can be solved using Newton's

iteration approach. As a consequence of this, y(t) may be
calculated.

1 1
use ti =5 —5|cos

3. Numerical Problems:
Problem 1:

1
YO+ 5V O+ () = 4= 9t + 2 -1,

y(0) =0, y(1)=0. (15)
Exact Solution:
y(t) = t? — 5.
Source: [29].
Equation (15) may be solved by using our method with the

parameter (m =3), we get ¢, =0, ¢ =_—1, Ccy =

3
§ and c¢3 = 0. The approximate solution as

y(t) = y3(t)
=CT¢(t)
= [co, €1, €2, ¢3][D3 (1), DI (1), D3 (1), D3 ()]”
= coD5(t) + ¢, Di (t) + ¢, D3 (t) + ¢3D3 ()

—(t — 1)3
_ L2 qlec-1D-2)|
9 73 3 O] t1-t2) |
l t3 J
=t2—¢3 (16)
Problem 2:

The following form of a singular boundary value problem of
the Dirichlet type on the interval [0, 1] is taken into
consideration
" 1 I+ 1 — 3
ye) -y x(1+x)y(x) =—x,
y(0) =0,y(1) =0. 17)
Exact Solution:

y(x) = 144(=1 1 2In(2)) (14in(x + Dx + 14in(x + 1)

— 14x + 6x? — 12x2In(2) — 2x3 + 4x3In(2) + x*
—2x*In(2) + 9x5 — 18x°In(2))
Source: [30].
We apply the proposed method above to get the solutions
when m = 9 as follows:
Yo(x) = 0.000000004x + 0.084172400x2 —
0.028045963x> + 0.013921562x* — 0.0745726588x° +
0.0069360632x% — 0.0033157327x7 + 0.0010688217x8 —
0.00016449544x°.
Figures (I, 1I) indicate the absolute error and numerical
solutions, respectively, for problem 2.
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Fig. 1. Absolute error with m = 9 for problem 2
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Fig. 1. Numerical solutions y,,,, m = 3,4, 5 and exact solution y, for problem 2

Problem 3:
2
y'(x) + ;y’(x) +y(x) =0,
y(0) =1, y(1) =sin(1). (15)
Exact Solution:
sin(x)
y(x) = .

Source: [17].
Applying the proposed method form = 10, the table |
illustrates the numerical results of the presented method
(PM) in comparison with the exact solution and other
methods [17].

Table (1) shows that the absolute error was largest
when
x; = 2.0 for both the Standard Adomian Decomposition
Method (SADM) and the presented method. The SADM
approach produced zero values to the fourth decimal point,
but the given method gave zeros to the eighth decimal point.
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Table 1. Comparison the absolute error for problem 3 with
m = 10.

X; Exact solution Absolute | Absolute Absolute
Error Error Error
MADM SADM PM

1.0 0.841470984807897 0.0E-7 3.00E-8 1.77685E-18
11 0.810188509146759 0.0E-7 6.00E-8 2.89671E-13
1.2 0.776699238306022 0.0E-7 1.50E-7 3.43581E-12
1.3 0.741198604167072 0.0E-7 3.50E-7 2.32881E-11
1.4 0.703892664277472 0.0E-7 7.20E-7 1.14019E-10
15 0.664996657736036 0.0E-7 1.42E-6 4.47034E-10
1.6 0.624733501900941 0.0E-7 2.71E-6 1.48829E-09
1.7 0.583332241442629 0.0E-7 4.96E-6 4.36725E-09
1.8 0.541026461598997 0.0E-7 8.76E-6 1.15860E-08
1.9 0.498052677730218 0.0E-7 1.50E-5 2.82985E-08
2.0 0.454648713412841 0.0E-7 2.50E-5 6.45020E-08

All absolute error values for the Modified Adomian
Decomposition method (MADM) were published only to the
seventh decimal point (see the third column in table I). This
clearly demonstrates that the proposed method produced
excellent outcomes.

4. Conclusion:

In the current article, a new numerical method is given to
determine the solution for linear problems with a single
boundary value. The utilization of DP-Ball Polynomials allows
for an approximation of the unknown function while also
treating boundary conditions of the Dirichlet type. In addition
to that, it may also be used in situations involving singular
boundary value issues. In this article, three numerical examples
are used to show how useful the method is.
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