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Abstract: Solving Dirichlet-type boundary value problems (BVPs) using a novel numerical approach is presented 

in this study. The operational matrices of DP-Ball Polynomials are used to solve the linear second-order BVPs. The 

modification of the operational matrix eliminates the BVP's singularity. Consequently, guaranteeing a solution is 

reached. In this article, three different examples were taken into consideration in order to demonstrate the 

applicability of the method. Based on the findings, it seems that the methodology may be used effectively to 
provide accurate solutions. 
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1. Introduction   

A numerical approach for addressing singular second-order 

linear boundary value problems of the Dirichlet type is 

provided. These kinds of problems occur in different 

applications, such as structural mechanics, chemical 

reactions, and gas dynamics. The existence and uniqueness 

of the solution for such problems were described in [1]. 

Series solutions, Chebyshev polynomials, B-splines, and 

cubic splines [2]–[5] have been taken into consideration by a 

number of investigators to solve these kinds of BVPs. 

Moreover, additional methods include fitted mesh [6], 

Green's functions and decomposition [7] and Green's matrix 

[8]. Methods which are based on reproducing kernel space 

[9], [10], Sinc collocation method [11], Sinc Galerkin 

method [12], and an iterative predictor-corrector type 

method which is based on finite difference approximation 

[13] are also included in latest results. There have been 

some reviews of existing methods based on Bernstein 

functions published in [14] and [15]. Chebyshev collocation 

method [16] was presented to solve the singular two-point 

boundary value problems of differential equations. The 

Adomian decomposition method is used to solve a class of 

singular differential equations with Dirichlet conditions 

[17]. Dejdumrong operational matrix [18] was applied to 

obtain the solutions of some types of differential equations. 

Haar wavelet collocation method was introduced to get the 

solution of Lane-Emden equations with Dirichlet and 

another type of boundary conditions [19]. Lately, there are 

some authors who have studied the given problem with 

Dirichlet boundary conditions [20, 21, 22]. 

  This article aims to develop an improved 

operational matrix as a numerical method for solving singular 

second-order Dirichlet-type boundary value problems. Asides 

from this introductory section, a review of the Ball 

polynomial is presented in Section 2, with applications of the 

operational matrix of derivative explained in Section 3. 

Relevant numerical problems are considered in Section 4, 

where the results and comparison with other authors are 

shown. The article is concluded in Section 5. 
 

2. Review on Ball Polynomial   
The Ball polynomial was declared by A. A. Ball in his well-

known aircraft design system CONSURF in [23]. It is 

Hadhramout University Journal of Natural & Applied Sciences Vol 19 No 1 (2022) 39–44 

 

Digital Object Identifier: 
Received 14 November 2021,  

Accepted 22 April 2022,  

Available online 13 September 2022 

 

Article 
 

 

Contents lists available at https://digitalcommons.aaru.edu.jo/huj_nas/. 

 

 Hadhramout University Journal of Natural & Applied Sciences  
 

mailto:khrd@ahgaff.edu


 

04 

 Improved Operational Matrices of ……………….….                                        Kherd et al  

VOLUME 19, 2022 

described as a cubic polynomial and explained 

mathematically as 
 

(   )    (   )     (   )                     (1) 
 

The high generality of the Ball polynomial has been the subject 

of discussion in a number of recent papers, as well as its 

properties. For example, in the 1980s, there were two different 

Ball polynomials of arbitrary degree. These polynomials, which 

were given the names Said-Ball and Wang-Ball, [24]-[26] and 

DP-Ball, were another generalization of the Ball polynomial 

that came out in 2003 [27].  
 

A. DP-Ball Polynomial Representation 
  

The degree m DP-Ball polynomial [27] is defined by: 
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⌊ ⌋ and ⌈ ⌉ denote the greatest integer less than or equal to,  

and the least integer greater than or equal to t , respectively. 
 

Definition:  

The DP Monomial matrix form can be formulated in the 

form by [28] 
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The following are some of the properties that are satisfied 

by the DP-Ball basis function: 

i. The DP-Ball basis function is non-negative; that is, 
 

  
 ( )                               (5) 

 

ii. The partition of unity that is, 
 

∑   
  

   ( )                                     (6) 
 

In general, we approximate any function  ( ) with the first 

(   ) DP-Ball polynomials as: 
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where                   ( )             

and    is the DP monomial matrix form given in (3). The 

operational matrix of the derivative of the DP-Ball 

polynomials set  ( ) is given by 
 

  ( )

  
  ( ) ( )  is the     by     operational 

matrix of the derivative is defined as: 
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where   is DP-Ball monomial matrix form, and 
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We can generalize Equation (9) as 
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B. Practical Implementation of the Derivational 

Operational Matrix: 

 

Within this part, we will provide the derivation of the 

technique for solving differential equations of the type 
 

  ( )   ( )    ( )  ( )    ( )( ( ))   ( )    (11) 
 

with Dirichlet boundary conditions 

          ( )       ( )                                        (12) 

Where   ( )         ,           and   ( ) are 

known, while  ( ) is unknown. 

Approximating Equation (11) by DP-Ball Polynomials as 

follows: 

  ( ) 
  ( ) ( )    ( ) 
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    ( )             (13) 

Where                  we can write the residual 

 ( ) for Equation (13) as 

 ( )    ( ) 
  ( ) ( )    ( ) 
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                      ( )( 

  ( ))     ( )                 (14) 

To find the solution of  ( ) given in (11), we first collocate 

(14) at (   ) points. For suitable collection points, we 
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use    
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Together, these equations with (12) generate (m+1) 

nonlinear equations that can be solved using Newton's 

iteration approach. As a consequence of this,  ( ) may be 

calculated. 

3. Numerical Problems: 
Problem 1: 

   ( )  
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Exact Solution: 
 ( )         

Source: [29]. 

Equation (15) may be solved by using our method with the 

parameter (    )  we get          
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Problem 2: 

The following form of a singular boundary value problem of 

the Dirichlet type on the interval [0, 1] is taken into 

consideration  

   ( )  
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                  ( )     ( )                                        (17) 

Exact Solution: 
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Source: [30]. 

We apply the proposed method above to get the solutions 

when     as follows: 
  ( )                              
                                                  

                                                

                   
Figures (I, II) indicate the absolute error and numerical 

solutions, respectively, for problem 2. 

 

 
 

 
 
 

Problem 3: 

   ( )  
 

 
  ( )   ( )     

 ( )      ( )      ( )                                     (15) 

Exact Solution: 

 ( )  
    ( )

 
  

Source: [17]. 

Applying the proposed method for     , the table I 

illustrates the numerical results of the presented method 

(PM) in comparison with the exact solution and other 

methods [17]. 

        Table (1) shows that the absolute error was largest 

when  
         for both the Standard Adomian Decomposition 

Method (SADM) and the presented method. The SADM 

approach produced zero values to the fourth decimal point, 

but the given method gave zeros to the eighth decimal point. 
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Table 1. Comparison the absolute error for problem 3 with 

      

 

All absolute error values for the Modified Adomian 

Decomposition method (MADM) were published only to the 

seventh decimal point (see the third column in table I). This 

clearly demonstrates that the proposed method produced 

excellent outcomes. 

4. Conclusion:  
In the current article, a new numerical method is given to 

determine the solution for linear problems with a single 

boundary value. The utilization of DP-Ball Polynomials allows 

for an approximation of the unknown function while also 

treating boundary conditions of the Dirichlet type. In addition 

to that, it may also be used in situations involving singular 

boundary value issues. In this article, three numerical examples 

are used to show how useful the method is. 
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بي بول لحل مسائل القيمة الحدودية من نوع  –المصفوفات التشغيمية المحسنة لمتعدد حدود دي 
 الشاذة من الدرجة الثانية الخطية ديريتشميت
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باستخدام نيج رقمي جديد في ىذه الدراسة. تُستخدم المصفوفات التشغيلية لعناصر  ديريتشليت مشكلات قيمة الحدود من نوع تم حل الخلاصة:
وبالتالي، يتم  .BVP من الدرجة الثانية. تعديل المصفوفة التشغيلية يلغي الشذوذ BVPs بي بول لحل –الحدود التي تعمل في متعدد حدود دي 

و أنو الوصول إلى حل. في ىذه المقالة، تم أخذ ثلاث مسائل مختلفة في الاعتبار من أجل إثبات قابلية تطبيق الطريقة. بناءً على النتائج، يبد
 .يمكن استخدام المنيجية بفعالية لتوفير حلول دقيقة
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