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Abstract: In this paper, three iterative techniques are introduced for finding the numerical solutions of nonlinear
equations. It is demonstrated that our methods exhibit convergence of four, five, and seven orders. Analysis reveals
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1. Introduction:

Nonlinear equation root finding plays a significant role in
numerical analysis and has wide-ranging applications in
science and engineering [1, 2]. High precision is often
necessary for numerical computations, highlighting the
importance of higher-order numerical methods [3].

The development of a method to tackle the non-linear
equation f (x)=0is imperative in numerical analysis,
given the frequent occurrence of such equations in diverse

_Fx,)

f(x,)
well-known and extensively utilized, provides a sequential
series of approximations that converge quadratically to a
simple root A4 of the equation f (x)=0.

Traub, [7], commenced the classification of iterative
methodologies, advocating for a third-order iterative
process. Jarrat, [8], proposed a series of methods including
two points and two steps, with one function and two
derivative assessments per iteration, and one parameter for
achieving fourth-order convergence.

In recent years, a multitude of authors have formulated
high-order iterative methods and scrutinized their
convergence analysis when applied to the solution of
nonlinear equations, as evidenced by [10-14] and the
associated references. We present and conduct analysis of

n+l = n
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fields such as science, technology, and engineering [4].

The solution of various equations, such as differential and
integral equations, typically involves tackling nonlinear
equations [5, 6]. Within this article, we propose the
introduction of three innovative iterative techniques for
locating a simple root A of a nonlinear equation
f (x)=0, where f :1 cR >R is a scalar

function on an open interval | .
The Newton's method (NM):

n=012.. )

new three steps, fourth- order and fifth-order iterative
methods and a four steps, seventh-order iterative method
for the solution of nonlinear equations.

The convergence order of a sequence <X, > to a
simple zero, A4 , of a real function f (X ) is a positive real
number a if the limit

lim, (| Xpu—AllX, =4 |“) = [is satisfied, where

PR, [15]. If a=2 or 3 the sequence is said to

have quadratic convergence or cubic convergence,
respectively.
We call the relation
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+1
&na =P +0(e7) @)
as the error equation, where &, =X, —A is the error in

the N -th iteration. If we can demonstrate the error equation
for any iterative method, then the value of ¢« is its order of
convergence, [16].

Consider three successive iterations X, X, and

X,4 . that are closer to the root A , then, the
computational order of convergence o, see [17], is
approximated by using (2) as

_ Inl(xm—l_ﬂ“)/(xn _/1)|
CInf(x, = A/ (Xoy = A)]

The efficiency index can be calculated as pﬂw , Where
p s the order of the method and W is the number of

function evaluations per iteration required by the method,
[18].

At the start, we present three newly developed higher-
order methods and establish the convergence orders
associated with these techniques. In conclusion, various
numerical examples are provided to validate the theoretical
results and illustrate their performance.

2. Main Results:

Firstly, we introduce new fourth-order iterative method
(4thOIM) as follows

Yn=X, —f (Xn)/f ’(Xn)’ yn =X, +f (Xn)/f '(Xn)1

2f (x )f 3
Xn+l:yn+ - ( n) (yn) ~ , n:0’112,.“ ()
f (Xn)(Sf (yn)_f (yn))
For the method (3) we have the following convergence result.
Theorem 1 Let A be a simple zero of sufficiently differentiable function f :1 < R — R for an open interval | . If X,

is sufficiently close to A , then the method defined by (3) is of fourth-order and satisfies the error equation

gn+l :Czsg: +O (gr?)

where &, =X, — A, ¢, = £ ©(1)/ (k! f'(1)).
Proof.

Using Taylor expansion of f(X.) and f'(x,) about 4, we get

f(x,) = "(Dle, +ce; +C56, +0 ()] @)

and

f'(x,)=f "(A)[L+2c,¢e, +3.e2+0(eH)], (5)

therefore

F () /17(x,)

=g, —C,e’ +2(c2—c,)e’ +(Tc,c,—4c

3 4
2 _3C4)gn

+(6c’ +10c.c, +8¢, —4c, —20c’c,)e’ +(17cc,
+13c,c, +52cc, - 28c2c, —5¢c,—33c,c2 —16¢)) e’
+(16c.c, —6c, —36¢/C, +22c.c. —92c,cc, +70c.C,
+12c7 +126¢2c —18c: —128c,c, +32¢))e! +O ()

SO

d =y, —-A=¢,—-f (x,)/f'(x,)

(6)

=C,el +2(C,—C2)e’ +(4cs + 3, —Tc.C,)er + (4, +20c
—6c2—10c,c, —8¢7)es +(28c e, +5¢, +33c,c2 +16¢°
-17cc,—13c,c. —52cc, )&’ +(6c, —16¢,¢c, +36¢.C,
—22cc.+92ccc, —70cc, —12c; —126¢2c? +18¢c

+128c1c, —32¢2)el +O ()
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and
d, =y, -A=¢,+f (x,)/T'(x,)
=2¢,—d,
=2¢,—C,e>+2(c. —c,)ed + (Tcc,—4c) -3, )&t +(6¢ +10c,C,
+8c, —4c, —20c7c,)el +(17c L, +13.c. +52c, : ®)

—28cic, -5, —33c,c2—16¢; )¢ +(16c.c, —6C, —36¢.C,
+22cL.—92c.cc, +70cc, +12¢; +126c2cZ —18¢
~128c,c, +32¢0)e! +0 (£2)

Taylor expansions of f(y )and f (¥ ,) around A are given as

f(y,)=f'(Ad, +cd;+cd;+0d)], ©)
f(y,)=f ", +cd; +cdy +O@dN] . (10)
and hence, by (7) and (8), we attain

f(y,)
=f '(A)[c,e’ +2(c,—Co)ed +(5cs + 3, —Tc.Co)el

n

+(24c%c, +4c, —12c? —6c2 —10c,C,) &5 + (28¢2

+34ckc, +5¢c, +37c,c2 -7k, —17cc, -1k C.)el 4y
+(6¢c, —16¢c.c, +44cic, —22c.c. +104c,c £, —102ck,
~12c2 —160c2c2 +18¢3 + 206c.c, — 64cS)s! +0 (£2)]
and
f(y,)
=f '(MD[2e, + X, +2(3k,—c2)e + (55 +13%c, —1%k.¢,) &) 12

+(42cZc, +28c, —12c, —18c2 —34c.c,)e” + (28¢;
+106¢c.c, +59c, +103c,c2 —119cc, —83c c, —83%,C.)el +0O (&)
Now, from (4), (11) and (12), we have
£ () (V)
=f 2(A)[c,&d +(2c,—c2)el + (X5 + 3, —4eC,)e (13)
+(15ckc, +4c, —7c; —4cZ —6e.c,)el +0(g])]
and

Sf (yn)_f (Yn)

: 14
£ (2)[-2e, + 20,6 +4(c, - 2c2)° + 2002 +¢, ~11.0)e +O ()]
therefore, using (5), we get
f'(x,)|5f —f(y
(x[5F (y,) =T (¥,)] )

=f 2(A)[-2¢, — 2,62 —2(C,+ 2c2)ed +2(2c3 -, —4c c,)et +O (69)]

VOLUME 21, 2024
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Now, dividing (13) by (15), we achieve
f (x)f (¥,)
f ,(Xn)[5f (yn)_f (Vn)] . (16)
=—C,e’+2(c;—c)ed +(Tec, -3k, —3)er +0(&)

Finally, using (3), (16) and (7) we get the error relation:
Ennn =Xpn— A

T
O (v, -1 (7))
=c,¢, +0(&,),

this implies that the method defined by (3) has a fourth-order.
Now, we construct a new fifth-order iterative method as follows

Y. =X, ~f (Xn)/f ’(Xn)1 y~n =X, +f (Xn)/f ,(Xn)l

2
Xn+1=yn+ ' 2f (Xn)f (yn,,) 2 y n=0,1,2,... l (17)
FrOc)[FOG)GE (y,) = F (7)) +2F 2(y,) ]
Theorem 2 Let A be a simple zero of sufficiently differentiable function f :1 < R — R foranopeninterval | . If X,

is sufficiently close to A , then the method defined by (17) is of fifth-order and satisfies the error equation

3 5 6
gn+l =2C2(02 +C4 _CZCS)gn +O (gn)

Proof.

From (13), (14) and using (4), we have

f2x)f (¥,)
=f *(A)[c,er +2c,8° +(2¢5 + X, —C,C ) , (18)
+(10cic, +4c, —4c, —2cZ —2c.c,)el +O(&D)]
and
f (Xn)[5f (yn)_f (yn)]
=f 2(D)[-27 +2(C; — X3)en +40,(3] —4c,)er +O ()
By (11), we obtain

f2(y,)=f 2(A)cie, +4c,(c5—C;)en + (14c; +60,, —22c5C, +4c;)en +O(£1)] |, (20)
and hence

f (Xn)[5f (yn)_f (yn)]+2f 2(yn)

(19)

. 21

=f ?(A)[-2¢ +2(c, - 2c2)e, +4c,(c; —2¢,)e’ +O (&) ey
From (5) and (21), we attain

FrO)[F oG (BF (v) —F (7)) +F 2(v,) ] o

=f *(A)[-2&? —4c,e’ —4(c +c,)el —4(c +cc,+2¢,)e’ +O(&l) '
Now, from (18) and (22), we obtain

VOLUME 21, 2024
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2f *(x)f (¥.)
) [F G)GE () —f (7)) +2f 2(y,) ]
=—C,6; +2(c; —C3)e, +(Te L, — %, —4¢))e, (23)
+2(6c,c, +5c, +32—11cic, —2c.)e’ +0 (&)
and hence, by (17) and (23), we attain the error relation:

Eni =Xy —4

. 26 20, (y,) |
TG )G (v =T ()2 %(y,)]
=2¢,(c] +c, —cLy)er +O(&2)

this certifies the method established by (17) has a fifth order.
Finally, we construct new seventh-order iterative method (7thOIM) as follows

y,=x,—-fFx,)/f'(x,),
yAn:yn+§n1yn:yn_§n ) (24)
2f *(x ) (¥0)<s

Xn+l:yn+ 2 ’ 2 — — y n=0,1,2,...
af (yn)f (Xn)é/n_.f (Xn)(f (yn)_f (yn))
fOXF (Ya)
where ¢ = — . 1 .
f (Xn)[2f (yn)_f (Xn)]
Theorem 3 Let A be a simple zero of sufficiently differentiable function f :1 < R — R foran openinterval | . If X,

is sufficiently close to 4 , then the method defined by (24) is of seventh-order and satisfies the error equation

€, =2C,(2C, —C,4 _sz)(2C23 —-15c.c, _C4)5; +0 (5:13)
Proof.
From (4) and (11), we have

2f (y,)—f (x,)
=f '(A)[-¢, +C,&’ + (X, —4c)e’ + (10 +5¢c, —14c.c,)e! | (25)
+(48clc, +7c, —24c, —12cZ —20c,c,)e. +O (eD)]
so by (5), we get
fr(x)[2f (y,)—f (x,)]
=f *(A)[-¢, —C,e’ —2c2e> +(2¢) +c, —5.C,)e! | (26)
+ (8C2203 +2C, - 4C; - 3C32 - 6C2C4)85 +0 (5:)]

and hence, dividing (13) by (26), we attain
_EF ()
toEG)[2f (va) —f (x,)]
=—C,e. —2(c,—cl)e’ + (6L, +2¢7 —5¢5 -, )er . 27)

+(6c, +4c +8c,c, —4c, —12cc, —2¢3) e’ +0(&0)
Now, using (24), (27) and (7) we obtain

VOLUME 21, 2024
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dn = Yn -4
=dn + n
=c,(2c,—c,—cX)el +(8clc,—2c2 —2c.c, —2¢;) —2¢))e +0O (&°)
furthermore

d,=y,—-4
:dn _é:n
= 2,82 +4(c,—c2)e’ + (9 +6¢, —13c,c,—2¢)) el
+(8c, +32c2c, —10cZ —18c,c, —14c, +2¢3)e> +0 (°)
Using Taylor expansion of f (y ) and f (Y¥,) around 4, we have
f(y,)=Ff (W, +c,d2+cd?+0d)] .
f(y,)=f'(DMd, +ed; +cd’+O@d ],
and hence, by (28) and (29) we attain
f(y.)
=f "(A)[(2c2 —cc,—c3)e +(8ckc, —2c2 —2c,¢, —2c5 —2¢3)e? +0O(&°)]
and
f(y.)
=f '(A)[2c,&Z +4(c, —C2)e + (13 +6c, — 13k, —2¢)) el
+(8c, +48c’c, —10cZ —18c,c, —30c; +2¢))el +O (&9)]
Now, using (4), (32) and (33) we get
f2(x,)=f *(A)[e? +2c,6> +(cZ +2¢,)er +(2¢, +2¢.¢,)e” +O(g))]

and

f (Yn)_f (Yn)

=f '(A)[-2c,&’ +4(c’ —c,)el + (4cs +12c,c, —14cS —6c,) et

+(28c, —40cZc, +8c2 +16¢c,c, —4c) -8, )e> +0(&2)]
and hence, we get
FAx)[F (V) =T (¥,)]
=f *(A)[-2c,e: —4c.e’ +(4c7 — 8¢S —6c,) e
+(4c; —12cic, +4cc, +4c] —8¢,)e! +0 ()]

From (20) and (27), we achieve

f2(y )&, = *(A)[-cje; +60;(C; —C5)e, +O ()]
therefore, by (5), we get

2y )f '(x,)E, =F P(D-cje, +2¢;(2c; —3;)e, +O(&))] -
Now, from (36) and (38), we obtain
4F 2(y ) (X)), =T 2 ) [ (v,) = (V)]
=f *(A)[2c,&’ +4c,e’ + (4¢] + 6, —4c)) e’
+(12c; —12ckc, —4c.c, —4c; +8c.)el +0 (£2)]

VOLUME 21, 2024
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Using (27) and (34), we get

£2(x,)8, =f P(D[-0p8! — 20565 + (207 ~ 205 ~%,)e!

+ (203 - 264~ 24, — dc)e] +O ()] 4o
and hence, by applying (30), we attain
(Y 2(x,)E =F *(A)[c,emd, - chg,f’d:n +(2c2 -2c] -%,)ed, )
+(2c] —2c, —24ckc, —4c)eld  +0(£7)]
therefore, using (39) and (41), we get
2f (¥)f *(x,)é,
4F 2y OF (%6, =1 2 ) [F (V) —F (V)] (42)

=—d_+2(2c-15c,c,—c,)&d, +0(d)

Finally, using (24), (42) and (28) we get the error relation:

Ena =X -4

=d_+

2f (¥,)f *(x,)<,

Ay ) ()G ) () -F ()]
=2c,(2c, —¢c,—c2)(2c —15¢,¢, —¢,)el +O (&)

This validates that the method defined by (24) is of
seventh-order.

For every iteration, 4 function evaluations are required
for both fourth order iterative method (4thOIM), (3), and
fifth order iterative method (5thOIM), (17); 3 evaluations
of f and one evaluation of f ', while seventh order
iterative method (7thOIM), (24), requires 5 function
evaluation, 4 evaluations of f and one evaluation of f '.
The method 4thOIM exhibits an efficiency index of
4Y* ~1.4142 as well as Newton’s method (NM), (1). The
method, 5thOIM demonstrates an efficiency index of

5Y4 #1.4953, and the method 7thOIM displays an

efficiency index of 7“° =1.4757. These efficiency
indexes outperform Newton's method (NM), (1) with an

efficiency index of 2“2 ~1.4142, as well as the tenth
order (TO) method [11], with efficiency index

106 ~1.4677.

3. Numerical Examples and Conclusion:

In this particular section, we deploy the recently introduced
methods 4thOIM, 5thOIM, and 7thOIM defined by
equations (3), (17) and (24) respectively. The purpose is to
address nonlinear equations and compare the outcomes with
Newton’s method (NM) and the method (TO) [11].

The functions utilized in this context are listed below, [19]:

f,(x) =x°+ 4x°-10, 1 = 1.36523001341409688791373,
fo(x) =x°+x*+ 4x?-20, 1= 1.46627907386472267070587,

f3(X) =ex2+7x—30_17 A= 3

f,(x) = (sinx)®>—x%+ 1, 1= 1.40449164821534111524670,

f.(x) =e*sinx +In(x*+ 1), A= 0,

fo(x) =x°-sin’x +3cosx +5, 1 =-1.58268704575206986540081,
fo(x) =x®-e™, A= 0.772882959149210124749629.

The numerical demonstrations were executed in
MatlabR2017b, utilizing 200 digits of floating-point
precision and variable precision arithmetic. For the 7
functions mentioned above, we determined the solution for

each test function with two different initial guesses X, .

VOLUME 21, 2024

The iterative procedures concluded when the error,
IX ., =X, |+|f(x,)|, fell below 107°.

The number of iterations (IT) necessary under the
condition |x,,, —X, |+|f (x,) <107 is presented in Table
1, while Table 2 illustrates the computational order p for
all the examples considered.
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Table 1 shows numerical outcomes suggesting that the
presented techniques, denoted as 5thOIM and 7thOIM,
achieve quicker convergence when contrasted with
Newton's method (NM). They also involve a reduced
number of iterations, highlighting the enhanced
convergence efficiency of the new methods 4thOIM,
5thOIM and 7thOIM. Also, in Table 1, the method 4thOIM
necessitate fewer iterations than Newton's method (NM).
The computational order of the four methods, NM (1),
4thOIM (3), 5thOIM (17), and 7thOIM (24), is presented in
Table 2. The numerical findings in Table 2 affirm that the

proposed methods uphold the theoretical results outlined in
Section 2.

In summary, the conclusion drawn is that the recently
introduced iterative methods, 5thOIM (17), and 7thOIM
(24), detailed in this paper hold their own against other
proficient equation solvers, like Newton's method (NM),(1)
and the tenth-order method (TO). The efficiency indexes of
1.4953, 1.4757, 1.4142, and 1.4677 for methods 5thOIM,
7thOIM, NM, and (TO) respectively, serve as indicators of
their performance.

Table 1. Numerical results for different methods with stopping criterium |X ., —X . |+|f (X )< 107%

The number of iterations (IT)

f(x) Xy NM(Eq.1) TO([11]) 4thOIM 5thOIM 7thOIM
¢ 15 9 2 4 4 3
! 1 10 3 5 4 3
f 12 10 3 5 4 4
? 2 11 3 5 4 4
¢ 35 17 5 8 7 6
: 4 24 8 12 10 8
f 16 10 3 4 4 3
! 25 11 3 5 4 4
f 05 11 4 5 5 4
° 2 11 4 6 5 4
f -1 10 3 5 4 4
° 3 11 3 5 4 4
f 0 11 3 5 4 4
! 15 11 3 5 4 4

Table 2. Numerical results for different methods with stopping criterium |x,, —x , [+|f (x,) <10

NM(Eq.1) TO([11]) 4thOIM 5thOIM 7thOIM

f(x) X, (T, p) aT, p) T, p) T, p) (T, p)
fl 1.5 (9, 2.0020) 2, ) (4,4.0491) (4, 5.0369) (3,7.1937)
1 (10,2.0018) (3,10.3010) (5, 4.0213) (4,5.0707)  (3,7.3794)

f, 1.2 (10, 1.9999) (3, 9.4298) (5, 3.9992) (4,4.9893)  (4,7.0018)
2 (11,2.0000) (3,9.5343) (5, 3.9989) (4,4.9868)  (4,7.0024)

f, 35 (17,1.9957) (5,7.8713) (8, 3.8494) (7,4.7633) (6, 6.7199)
4 (24,1.9947) (8, 9.3547) (12, 3.8531) (10,4.6235) (8, 6.1657)

f, 1.6  (10,1.8269) (3,9.9212) (4, 4.0227) (4,5.0162)  (3,7.0302)
25  (11,2.0006) (3,9.7953) (5, 4.0132) (4,5.0432)  (4,7.0123)

f 0.5 (11,1.9980) (4, 9.8126) (5, 3.9537) (5,4.9578)  (4,6.8111
2 (11,1.9983) (4, 9.6265) (6, 3.9783) (5,4.9071) (4, 6.7610)

VOLUME 21, 2024
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f ~1  (10,2.0029) (3,10.8454) (5, 4.0341) (4,5.1177) (4, 7.1021)
3 (11,2.0022) (3,10.7783) (5, 4.0534) (4,5.1300) (4, 7.1275)
f 0  (11,2.0002) (3,9.6018) (5, 4.0044) (4,5.0223)  (4,7.0212)
1.5  (11,2.0002) (3, 9.6159) (5, 4.0048) (4,5.0237)  (4,7.0197)
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