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Fifth and Eleventh-Order Iterative Methods
for Roots of Nonlinear Equations

Hassan Mohammed Bawazir*

Abstract

In this work, two iterative methods, based on Newton’s method, to obtain the numerical solutions of nonlinear
equations have been constructed. We proved that our methods converge in fifth and eleventh orders. Analytical
investigation has been established to show that our schemes have higher efficiency indexes than some recent
methods. Numerical examples are experimented to investigate the performance of the proposed schemes. Moreover,
theoretical order of convergence is verified on the experiment work.

Key Words: Nonlinear equation, Iterative method, Newton’s method, Convergence order.

1. Introduction:

The importance of solving nonlinear equations comes out from its applications in science and engineering
[13, 15, 18, 11, 7]. Many numerical applications use high precision in their computation, so higher-order
numerical methods are required [5].

Some differential equations and integral equations require solving of nonlinear equations [2, 10]. In this

work, we present two new iterative methods to find a simple root 4 of a nonlinear equation f (x) =0,

where f :1 © R— R :isascalar function on an open interval | .

One of the simple one step well-known methods for root finding of nonlinear equations is the classical
Newton’s method (CN)

xM:xn—M, n=012,.. @

fi(x,)
This method iteratively produces a sequence of approximations that converge quadratically to a simple
zero A of the function T .
Traub, [18], started classifying iterative methods. He suggested a third-order iterative method. Jarratt [9,
8], proposed a family of methods consisting of two points, two steps, costing one function, two derivative
evaluations per iteration and one parameter to reach order of convergence four.
In recent years, some high order iterative methods, for solving nonlinear equations, have been improved
and investigated see [13, 15, 1, 14, 12, 17, 6, 16] and the references therein.
In this paper we consider the newton’s method

f(x,)

yn:Xn_ ,

f(x,) o
oy T
n+l n f,(yn)

which also called double Newton’s method (DN), the method converges in fourth order [6].

First, we present a variant of the double-Newton’s method with fifth-order convergence. Based on the
new method, an eleventh-order iterative method is proposed. Finally, numerical examples are given to
show the performance of the two methods.

Basic definitions:
Definition 1. [3] Let A be a simple zero of a real function f (X), let <X, > be a real sequence that

converges towards A . We say that the order of convergence of the sequence is ¢ € R" if there exists
S €R" suchthat lim [| X — A% =4 |“:| = [, pis called asymptotic error constant. If

n—oo
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a =2 or 3 the sequence is said to have quadratic convergence or cubic convergence, respectively.
Definition 2. [11] Let &, =X, — A is the error in the n-th iteration, we call the relation

&y =P +0 (&) 3)
as the error equation. If we can obtain the error equation for any iterative method, then the value of « is
its order of convergence.
If X,,., X, and X, _, are three successive iterations closer to the root A . Then, the computational order

of convergence p (see [19]) is approximated by using (3) as
I (Xpu = A) (X, —A)|
In|(x, =A)/ (X, = A)|
The efficiency index is plN" , where P is the order of the method and W is the number of function

evaluations per iteration required by the method, see [4].

2. Main Results
Firstly, we introduce new fifth-order iterative method as follows:

4)

_, _fxy)
yn_xn f,(xn)’
Foal F &)y ©)
Xpa=Yn— 1+ - y :
f '(yn{ 2 ()F (y,)

For the method (5), we have the following convergence result.
Theorem 1 Let A be a simple zero of sufficiently differentiable function f:l1 < R— R for an

openinterval | . If X, is sufficiently close to A, then the method defined by (5) is of fifth-order and
satisfies the error equation
2 2 5 6
€1 =C; (2C2 _1'503)gn +0 (‘9n)

where &, = A—X,, ¢, =F ©(A)/ (K !f (2)).

Proof.
Using Taylor expansion of f (X ) and f '(X,) about A4 , we have
f(x,)=Ff'(Ale, +C,&’ +c.e2+0 ()], (6)
f'(x,)=f'(A)[1+2c,¢, +382+0 ()], )
therefore

f(x)/f'(x,)

=g, —Cyel +2(c2 —c,)ed +(Tcc,—4cs —3k,)e!
+(6¢2 +10cc, +8c, —4c, —20cc,)e’ +(17cc,
+13c,c, +52cc, - 28cc, —5¢, — 3% ,c7 —16¢;)e’
+(16c.c, —6c, —36¢C7C, +22c.c. —92c.cc, +70ck,
+12c7 +126c2c2 —18cS —128c,c, +32¢)) el +O(£Y)

(®)
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SO

d, =y, —A=g —f (x,)/f'(x,)
=C,e +2(c,—Cc2)ed +(4c] + X, —Tc.c,)et + (4c, +20c ¢,
—-6¢2-10c,c, —8¢;)e +(28cxc, +5¢c, +3%k.c7+16¢C;
-17cc, —13c,c, —52ck, )&’ +(6c, —16¢,C, + 36c.C,
—-22cc.+92ccc, —70ckc, —12c; —126¢2cs +18¢3
+128c,c,—32c))el +O ()

©)

Taylor expansions of f (y ) and f "(y,) around A are given as
f(y,)=f'(A)d, +c,d’+cd’>+0(d )] (10)
f'(y,)=f'(A)[1+2cd, +3xd>+0(d2)], (11)
so by (9) we obtain
f(y,)
=f '(A)[c,&’ +2(c,—c2)e’ +(5c; + 3, —Tc.c.)er
+(24cc, +4c, —12c, —6c; —10c,C,)e; + (28¢;
+34cic, +5c, +37c,c2 -7k, —17cLc, —13c,c, )&’
+(6¢c, —16¢c.c, +44cic, —22c.c. +104ccc,—102ck,
—12c? —160c’cZ +18cS +206¢c,c, —64c))e! +O (£2)]

(12)

and
f'y,)=Ff'(A)[1+2c’s’ +4c,(c,—cl)ed + (8, +6CC,
~11c’c,)e’ +(8c ¢, —20cc, +28cc,
—16¢2)e® +(60ck, +10c,¢, +32c° —68cc,
—16c.cL,+12c] —26¢2c, )’ +0(])]

(13)

Now,

FOy)/Ty,)

14
_d, —c,d2 4 2(C2 ¢, )03+ (Te.c, —dcd — %) +O (d?) 9

so, by (9) we get
Fly)/T(y,)
=C,&’ +2(c, —c2)ed + (kS + 3, —Tc,C,)er + (4c, +16¢c,
—4c,; —6c; —10c,¢c,)e> +(6c5 —32c5c, +29c,c2 +22c X,
+5¢,—17cc, —13c,C, )&’ +(6¢, —16¢.¢, +28c c, —12c.C.
+80c,cc, —38c.c, —12c7 —98c/c’ +18¢3
+68c,c, —12¢c))e! +O (&%)

(15)
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Using (7) and (13) we attain
fi(x,)=f'(y,)
=f '(A)[2c,¢, +(k,—2c2)e’ +4(c, —C,C,+CJ)eE’
+(5¢c, —8¢, —6c.c, +11c’c,)e! + (6c, —8C,C,
+20c’c, —28cic, +16c2)e +0 (£°)]

(16)

therefore
F(y () =T(y,))
=[f ’(ﬂ)]z[zczzg: +(7cC5— GCS)E: +(10cc, - 28C22C3
+18c, +6¢2)e’ + (13, —50c; —40c’c, +104c.c,
+17cc, —41c,c2)el +0(g])]

17

By (6) and (13), we achieve
fx)f(yn)
=[f "(A)[[e, +c,&’ + (c,+ )’
+(c,—2¢5 +4cc,)e!
+(c,—5cic, +4c; +6¢.c,)e> +0(eD)]

(18)

Applying (17) and (18),
A _Fy) () - (y4))
fOx)f'(y,)
=2cie’ +(Tc,c,—8c))e’ +(10c,c, —37cic, . (19)
+22¢, +6¢2)er +(13k.c, —52c; —52cc,
+127cc, +17cc, +28c,c2)e’ +0 (&8 )

Now, from (14) and (19) we obtain
[
F(y,)
=2c3¢t +(1lcic, —12c;) e’ + (16cic, — 78cc, , (20)
+44c3 +20c.c2)el + (21cic, —128cs —116¢C,
+354c;c, +58c,cc, —119cc +12c)e/ +O (&)
and from (9) and (15) we get
d,—f (y,)/T(y,)
=ciel +4(cke, —c;)el +2(X e, —10ck, +5¢;
+2c,c2)e +4(2cc, + XL, —8k, —Tck?
+15¢cc, —5¢5)el +O(£))

(21)
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Finally, by using (9), (20), and (21), we obtain the error relation as
Enn=Xpa— A

Cfly)) flh)A
oy, iy 2
= (2c; —1.5cic,)e” +(19csc, — 2¢5¢, —12¢5 —6e.cl)el 22)
+(44cs +31.5cc? - 2.5¢%c, —17cc.c, —26.5c%,
—117c,c, —6¢3)el +O(£Y)
=c;(2c; ~1.5¢;)¢, +0 (&7)

This means that the method defined by (5) is of the fifth-order.
Finally, we construct the eleventh-order iterative method as follows

0
TR
Zn:y{;<h)P+fwn61xu=vwnq -
Cool T 2,

. ﬂ_j@0P+HAWKM%VWM}
n+l n f ,(Zn) 2.|: (Xn)f r(zn)

Theorem 2 Let 4 be a simple zero of sufficiently differentiable function f:l1 < R— R for an

openinterval | . If X, issufficiently close to A, then the method defined by (23) is of eleventh-order
and satisfies the error equation

£,,=C5(2c2-15c,)° et +O (&)
Proof.
By (23) and using (22)
d, =z, -4

=(2c, —1.5c2c,)e’ +(19¢ckc, —2c,c, —12¢2 —60.c5) el

(24)
+(44c? +31.5ccZ —2.5cc, —17c,cc, — 26.5cc,
~117c,c, —6¢))e! +O (&)
Using Taylor expansion of f (z,) and f '(z,) about 4 , we have
f(z,)=t (D, +cdy +-1. (25)
and
f'iz,)=f'W[+2cd +3xd2+--], (26)
therefore
f(z,)/f'z,)
@7)

:d~n _C2d~nz + 2(022 _Cs)d~ng+ (7C2C3 _4C23 _3:4)d~: +0 (d~:)l

213



Fifth and Eleventh-Order lterative ............... Hassan Mohammed Bawazir

Using (25), (16), (26) and (6) we obtain
f ) (x)-1'(y,)
=[f "(AF[2c,5,d, + (3, —2¢])eid, (28)
+4(c, —cc+c)ed +--]

and
f'z,)f (x,)
=[f (M) [e, +C,&° +Ce2 +C,88 +C.e° (29)
6 -
Ce&, +2C,6,d, +--]
therefore

) (f'(x)-f'(y,)
2f (x,)f '(z,) (30)
=c,d, +(1.5c,—2c)ed, +(2c, 4.5, +4ci)ed, +---

n

Finally, using (24), (27) and (30) we get the error relation:

8n +1

=d, —[d, —c,d?+--[1+cd, + (1.5, -2c)ed,
+(2c, —4.5c,C,+4c])eld, +-]
=(2c2 -1.5¢c,)e,d? +(4.5,c,—2c, —4cd)ed 2 +---
—c(2c —1.5¢,) M +0 (£12)

This means that the method defined by (23) is of the eleventh-order.
The method (5), requires 4 function evaluations per iteration, 2 of f and 2 of f ' , whereas the method
(23), requires 6 function evaluations, 3 of f and 3 of f ". The methods (5) and (23) have the efficiency

indexes 574 =1.4953 and 11"® =1.4913, respectively, which are better than the efficiency index
2% =1.4142 of the Newton’s method (1) and the double Newton’s method (2) and the efficiency
index 10M® =1.4678 of the tenth-order (TO) method [12].

3. Numerical Examples and Conclusion

In this section, we employ the new methods defined by (5) and (23) to solve some nonlinear equations
and compare them with Classical Newton’s method (CN) (1) , double Newton’s method (DN) (2) and the
tenth-order (TO) method [12].

We use the following functions, [6]:

f,(x) = x*+ 4x* -10, 1 = 1.36523001341409688791373,

f,(X) =x>+x*+ 4x*-20, 1= 1.46627907386472267070587,
f(x) =e“7%®_1 1= 3

f,(x) = (sinx)> —=x* + 1, 1 = 1.40449164821534111524670,
f.(x) =e*sinx+In(x*+ 1), 1= 0,

f.(x) = x® —sin®x +3cosx +5, 1 =-1.58268704575206986540081,
f.(x) =x*-e™, 1= 0.772882959149210124749629.
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All numerical examples were performed in MatlabR2017b, using 200 digits floating point (digits: = 200),
and variable precision arithmetic. We have computed the root of each test function for two different initial

guesses X, for 7 real functions, listed above, while the iterative schemes were stopped when
—200
|Xn+1_Xn|+|f (Xn)|<10 .
Table 1: The sequence of the approximation zeros of the function f3 using Method (23) starting

with X, = 3.5 under the stopping criterium |X , — X, |+|f (x,)<107®

n X

n

2 3.00000000002245910662524848118525360119498284397827931029392
6305524772982590027144516065588926636400611309778469349585291
5524513876430378167616940295342698380052510985697379029153578
129681631722907493

3 3.000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000010729445438011
74552422450923302147574650562879647923146061555972878557019644
172289755575487

4 3.0000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000
0000000000000

5 3.0000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000
0000000000000
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Table 2: Numerical results for different methods with stopping criterium
|Xn+l_xn |+|f (Xn) |<107200

IT
f(x) X, CN (1) DN (2) TO[12] Eq.(5) Eq.(23)
f, 1.9 9 5 3 4 3
1 10 5 3 4 3
f, 1.2 10 5 3 4 3
2 11 6 3 4 3
fs 3.5 17 9 5 7 5
4 24 12 8 10 7
f, 1.6 10 5 3 4 3
2.5 11 6 3 5 3
fs 3 11 5 4 4 3
4.2 11 6 4 5 3
fe -1 10 5 3 4 3
-3 11 6 3 4 3
f, 0 11 6 3 4 3
1.5 11 6 3 5 3
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Table 3: Numerical results for different methods with stopping criterium

|Xn+l_xn |+|f (Xn) |<107200
f (X) CN (1) DN (2) TO [12] Eq.(5) Eq.(23)
X, (T p) ™ p) (T p) (T p) (T p)
f 1.9 (9, 2.0037) (5, 4.0221) (3, 10.2305) (4,5.0674) (3,11.3770)
1 1 (10, 2.0018) (5, 4.0213) (3, 10.3010) (4, 5.0676) (3, 11.3879)
f 1.2 (10, 1.9999) (5, 3.9992) (3,9.4298) (4, 4.9916) (3, 10.9442)
2 2 (11, 2.0000) (6, 3.9997) (3, 9.5343) (4, 4.9887) (3, 10.9294)
f 3.5 (17,1.9957) (9, 3.9742) (5, 7.8713) (7, 4.8251) (5, 10.2332)
8 4 (24, 1.9947) (12, 3.9379) (8, 9.3547) (10, 4.7824) (7, 10.2305)
f 1.6 (10, 1.8269) (5, 4.0057) (3,9.9212) (4, 5.0085) (3, 11.0344)
4 25 (11, 2.0006) (6, 4.0033) (3,9.7953) (5, 5.0043) (3, 11.0908)
f 3 (10, 2.0002) (5, 4.0024) (3,9.6135) (4, 4.9953) (3, 10.9560)
5 4.2 (11, 2.0002) (6, 4.0012) (4, 9.9558) (5, 4.9981) (3, 10.9163)
f -1 (10, 2.0029) (5, 4.0353) (3, 10.8454) (4,5.1260) (3,11.7674)
6 -3 (11, 2.0022) (6, 4.0134) (3, 10.7783) (4,5.1786) (3, 12.0135)
f 0 (11, 2.0002) (6, 4.0010) (3,9.6018) (4, 5.0050) (3, 11.0227)
7 15 (11, 2.0002) (6, 4.0012) (3,9.6159) (5, 5.0017) (3, 11.0391)

Table 1 shows an example of the sequence of the approximation zeros of the function f3 using the

method (23) starting with X, = 3.5 under the stopping criterion | X, — X, |+|f (X ) |<107%.
Displayed in Table 2 are the number of iterations (IT) required such that
[X =X, |+]f (X,)|<107®. Table 3 shows the computational order p for all considered

examples.

The computational results presented in Table 2 show that, the presented methods, (5) and (23) converge
more rapidly than Classical Newton’s method (1) and double Newton’s method (2) and they require less
number of iterations. Therefore, the new methods (5) and (23) have better convergence efficiency.

Table 3 shows the computational orders of 5 methods, CN (1), DN (2), TO[12], (5), and (23). It can be
seen from the numerical results displayed in Tables 3 that the numerical results of the proposed methods
support the theoretical results proved in Section 2.

Finally, we conclude that the new iterative methods (5) and (23), presented in this paper, can compete
with other efficient equation solvers, such as the Classical Newton’s method (1), and the double Newton’s
method (2), and the tenth-order method [12]. The results reflect the efficiency indexes 1.4953, 1.4913,
1.4142, 1.4142 and 1.4678 of the methods (5), (23), (1), (2), and TO [12], respectively.
4.Acknowledgments:
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